Evaluation of Baltimore Gas and Electric Company’s Smart Energy Pricing Program

Presented to:
9th International Industrial Organization Conference
Boston, MA

Presented by:
Sanem Sergici, Ph.D.
Ahmad Faruqui, Ph.D.

04/08/2011
Agenda

1. Introduction
2. Literature review
3. Research Question
4. Data
5. Methodology
6. Results
7. Conclusions
BGE initiated “Smart Energy Pricing (SEP)” experiment in 2008 to test residential customer responsiveness to dynamic pricing

SEP 2008 tested two dynamic pricing options: critical peak pricing (CPP) and peak time rebate (PTR) tariff

- Treatment period covered June-September 2008 and pre-treatment period covered March-May 2008
- 12 event days were called
- Final sample consisted 1,375 customers of which 1,021 were treatment and 354 were control
- Involved two technologies: Energy Orb and Central Air Conditioning (CAC) Switch

SEP 2009 tested only the peak time rebate (PTR) tariff

- Treatment period covered June-September 2009 and pre-treatment period covered March-May 2009
- 12 event days were called
- Final sample consisted 912 customers of which 734 were treatment and 178 were control
- Involved two technologies: Energy Orb and Smart Thermostat
Rate and Technology Combinations tested in the SEP 2008 and 2009 Pilots

<table>
<thead>
<tr>
<th>SEP</th>
<th>Group</th>
<th>Rate Design</th>
<th>Enabling Technology</th>
<th>Treatment Group</th>
<th>Control Group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>DPP</td>
<td>DPP</td>
<td>None</td>
<td>148</td>
<td>-</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>DPP_ET_ORB</td>
<td>DPP</td>
<td>Energy Orb and A/C Switch</td>
<td>111</td>
<td>-</td>
<td>111</td>
</tr>
<tr>
<td></td>
<td>PTRL</td>
<td>PTRL</td>
<td>None</td>
<td>126</td>
<td>-</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>PTRL_ORB</td>
<td>PTRL</td>
<td>Energy Orb Only</td>
<td>141</td>
<td>-</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>PTRL_ET_ORB</td>
<td>PTRL</td>
<td>Energy Orb and A/C Switch</td>
<td>113</td>
<td>-</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>PTRH</td>
<td>PTRH</td>
<td>None</td>
<td>127</td>
<td>-</td>
<td>127</td>
</tr>
<tr>
<td></td>
<td>PTRH_ORB</td>
<td>PTRH</td>
<td>Energy Orb Only</td>
<td>137</td>
<td>-</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>PTRH_ET_ORB</td>
<td>PTRH</td>
<td>Energy Orb and A/C Switch</td>
<td>118</td>
<td>-</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Total- SEP 2008</td>
<td>-</td>
<td>-</td>
<td>1021</td>
<td>354</td>
<td>1375</td>
</tr>
<tr>
<td>2009</td>
<td>PTR</td>
<td>PTR</td>
<td>None</td>
<td>268</td>
<td>-</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>PTR_ORB</td>
<td>PTR</td>
<td>Energy Orb Only</td>
<td>107</td>
<td>-</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>PTR_ET_ORB</td>
<td>PTR</td>
<td>Smart Thermostat</td>
<td>282</td>
<td>-</td>
<td>282</td>
</tr>
<tr>
<td></td>
<td>PTR_ET</td>
<td>PTR</td>
<td>Energy Orb and Smart Thermostat</td>
<td>77</td>
<td>-</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Total- SEP 2009</td>
<td>-</td>
<td>-</td>
<td>734</td>
<td>178</td>
<td>912</td>
</tr>
</tbody>
</table>
1- Introduction

All-in rates for the treatments are presented below

<table>
<thead>
<tr>
<th>SEP</th>
<th>Pilot</th>
<th>Original</th>
<th>Critical</th>
<th>Peak</th>
<th>Offpeak</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>DPP</td>
<td>0.153</td>
<td>1.309</td>
<td>0.149</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>DPP_ET_ORB</td>
<td>0.153</td>
<td>1.309</td>
<td>0.149</td>
<td>0.099</td>
</tr>
<tr>
<td></td>
<td>PTRL</td>
<td>0.153</td>
<td>1.313</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>PTRL_ORB</td>
<td>0.153</td>
<td>1.313</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>PTRL_ET_ORB</td>
<td>0.153</td>
<td>1.313</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>PTRH</td>
<td>0.153</td>
<td>1.903</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>PTRH_ORB</td>
<td>0.153</td>
<td>1.903</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td></td>
<td>PTRH_ET_ORB</td>
<td>0.153</td>
<td>1.903</td>
<td>0.153</td>
<td>0.153</td>
</tr>
<tr>
<td>2009</td>
<td>PTR</td>
<td>0.164</td>
<td>1.664</td>
<td>0.164</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>PTR_ORB</td>
<td>0.164</td>
<td>1.664</td>
<td>0.164</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>PTR_ET_ORB</td>
<td>0.164</td>
<td>1.664</td>
<td>0.164</td>
<td>0.164</td>
</tr>
<tr>
<td></td>
<td>PTR_ET</td>
<td>0.164</td>
<td>1.664</td>
<td>0.164</td>
<td>0.164</td>
</tr>
</tbody>
</table>

Notes:
1- All rates are presented in all-in terms. They include generation, transmission, distribution, and customer charges.
2- Rebate levels for PTRL, PTRH, and PTR are $1.16/kWh, $1.75/kWh, and $1.5/kWh respectively.
Time-based pricing has been extensively researched

Caves et al. (1984) reviewed the data from five residential time-of-use (TOU) pricing experiments

Aubin et al (1995) examined the impacts of Electricité de France’s (EdF) Tempo tariff

Braithwaite (2000) investigated the impacts of a residential TOU program using a constant elasticity of substitution model

Taylor et al. (2005) estimated hourly elasticities for Duke Power’s industrial customers on RTP rates
SEP participants reduced their usages in the range of 18 to 33 percent in 2008. Does this impact persist?

Impact evaluation of the SEP 2008 revealed that:

♦ Customers w/o technologies reduced their peak demand in the range of 18 to 21 percent
♦ When Energy Orb was paired with prices, the reductions were in the range of 23 to 27 percent
♦ When the CAC switch was activated in addition to the Orb, the impact ranged from 29 to 33 percent

Question: Is there a persistency in customers’ price responsiveness or do these impacts represent a one time novelty?
During the SEP 2008 and 2009, BGE collected hourly electricity usage data on treatment and control customers

Hourly electricity consumption data on all treatment and control customers for March-September 2008 and March-September 2009 periods

- We identified the group of customers who participated in both years resulting in a sample of 657 treatment and 178 control customers

Hourly temperature and dew point data for the analysis period

All-in rate information for all customers and dates
We estimated a constant elasticity of substitution (CES) model to obtain customers’ electricity demand parameters.

CES model is consistent with the theory of utility maximization and allows elasticity of substitution to take on any value.

- CES is more flexible than Cobb-Douglas model which imposes a unitary elasticity of substitution.
- There are more flexible functional forms such as Trans-log, Generalized Leontief, and Generalized McFadden, but this flexibility comes at the expense of ease of computation and interpretation.
For a two-period rate structure, CES model consists of two equations

1. Substitution equation to predict the change in load shape caused by changing peak-to-off peak prices
 ♦ Percent change in the ratio of peak to off-peak consumption when there is one percent change in the ratio of peak to off-peak prices

2. Daily (price) equation to predict the change in daily energy consumption caused by changing daily prices
 ♦ Percent change in the daily average consumption when there is one percent change in the daily average price

We employed the fixed-effects estimation routine to estimate the demand system
5- Methodology

Substitution Equation Specification

\[
\ln\left(\frac{\text{Peak} _ \text{kWh}}{\text{OffPeak} _ \text{kWh}} \right)_{it} = \alpha_0 + \alpha_1 \text{THI} _ \text{DIFF}_{it} + \alpha_2 \ln\left(\frac{\text{Peak} _ \text{Price}}{\text{OffPeak} _ \text{Price}} \right)_{it} + \alpha_3 \ln\left(\frac{\text{Peak} _ \text{Price}}{\text{OffPeak} _ \text{Price}} \right)_{it} \times \text{THI} _ \text{DIFF}_{it} + \sum_{k=1}^{6} \delta_k (\text{THI} _ \text{DIFF} \times \text{Month}_k)_{it} + \alpha_4 D _ \text{TreatPeriod} d_t + \alpha_5 D _ \text{TreatPeriod} \times \text{TreatCustomer} _ \text{it} + \sum_{k=1}^{6} \beta_k D _ \text{Month}_k + \sum_{k=1}^{12} \gamma_k D _ \text{CPP}_k + \alpha_6 D _ \text{WEEKEND}_t + \nu_t + u_{it}
\]

- \(\ln\left(\frac{\text{Peak} _ \text{kWh}}{\text{OffPeak} _ \text{kWh}} \right)_{it} \): Logarithm of the ratio of peak to off-peak load for a given day
- \(\text{THI} _ \text{DIFF} \): The difference between peak and off-peak THI. THI is defined as follows:
 \[
 \text{THI} = 0.55 \times \text{Drybulb Temperature} + 0.20 \times \text{Dewpoint} + 17.5
 \]
- \(\ln\left(\frac{\text{Peak} _ \text{Price}}{\text{OffPeak} _ \text{Price}} \right)_{it} \): Logarithm of the ratio of peak to off-peak prices for a given day
- \(\ln\left(\frac{\text{Peak} _ \text{Price}}{\text{OffPeak} _ \text{Price}} \right)_{it} \times \text{THI} _ \text{DIFF}_{it} \): Interaction of ratio of peak to off-peak prices and THI_DIFF for a given day
- \(\sum_{k=1}^{6} \delta_k (\text{THI} _ \text{DIFF} \times \text{Month}_k)_{it} \): Interaction of \(\text{THI} _ \text{DIFF} \) variable with monthly dummies
- \(D _ \text{TreatPeriod} \): Dummy variable is equal to 1 when the period is June 2008 through September 30, 2008
- \(D _ \text{TreatPeriod} \times \text{TreatCustomer} _ \text{it} \): Interaction of \(D _ \text{TreatPeriod} \) with treatment customer dummy
- \(D _ \text{Month}_k \): Dummy variable that is equal to 1 when the month is \(k \)
- \(D _ \text{CPP} \): Dummy variable that is equal to 1 on CPP days
- \(D _ \text{WEEKEND} \): Dummy variable that is equal to 1 on weekends
5- Methodology

Daily Demand Equation Specification

\[
\ln(kWh)_{it} = \alpha_0 + \alpha_1 \ln(THI)_{it} + \alpha_2 \ln(Pr\ ice)_{it} + \alpha_3 \ln(Pr\ ice)_{it} \times \ln(THI)_{it} + \sum_{k=1}^{6} \delta_k \ln(THI)_{it} \times D_{-\text{Month}_k} + \sum_{k=1}^{12} \beta_k D_{-\text{Month}_k} + \sum_{k=1}^{12} \gamma_k D_{-\text{CPP}_k} + \alpha_6 D_{-\text{WEEKEND}} + \nu_i + u_{it}
\]

- \(\ln(kWh)\): Logarithm of the daily average of the hourly load
- \(\ln(THI)\): Logarithm of the daily average of the hourly THI
- \(\ln(Pr\ ice)\): Logarithm of the daily average of the hourly Price
- \(\ln(Pr\ ice) \times \ln(THI)\): Interaction of price with \(\ln(THI)\)
- \(\ln(THI) \times D_{-\text{Month}}\): Interaction of \(\ln(THI)\) variable with monthly dummies
- \(D_{-\text{TreatPeriod}}\): Dummy variable is equal to 1 when the period is June 2008 through September 30, 2008
- \(D_{-\text{TreatPeriod}} \times D_{-\text{TreatCustomer}}\): Interaction of \(D_{-\text{TreatPeriod}}\) with treatment customer dummy
- \(D_{-\text{Month}_k}\): Dummy variable that is equal to 1 when the month is \(k\)
- \(D_{-\text{CPP}}\): Dummy variable that is equal to 1 on CPP days
- \(D_{-\text{WEEKEND}}\): Dummy variable that is equal to 1 on weekends
6- Results

Pooled Model Estimation Results

Substitution Equation - Pooled Model

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln_price_ratioxthi_diff</td>
<td>-0.017**</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ln_price_ratioxthi_diffx2009</td>
<td>-0.006**</td>
<td>(0.006)</td>
</tr>
<tr>
<td>ln_price_ratioORBxthi_diff</td>
<td>-0.006**</td>
<td>(0.008)</td>
</tr>
<tr>
<td>ln_price_ratioORBxthi_diffx09</td>
<td>-0.002</td>
<td>(0.603)</td>
</tr>
<tr>
<td>ln_price_ratioORB_TECHxthi_diff</td>
<td>-0.012**</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ln_price_ratioORB_TECHxthi_diffx09</td>
<td>0.002</td>
<td>(0.324)</td>
</tr>
</tbody>
</table>

Observations	294303
R-squared	0.114
Number of customerid	835

Robust p-values in parentheses

** p<0.01, * p<0.05

Daily Equation - Pooled Model

<table>
<thead>
<tr>
<th>Independent Variable</th>
<th>Coefficient</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln_pricexln_thi</td>
<td>-0.009**</td>
<td>(0.000)</td>
</tr>
<tr>
<td>ln_pricexln_thix2009</td>
<td>-0.004</td>
<td>(0.053)</td>
</tr>
</tbody>
</table>

Observations	293973
R-squared	0.101
Number of customerid	835

Robust p-values in parentheses

** p<0.01, * p<0.05

Full estimation results can be found in the paper.
Results show that the customers’ price responsiveness persist in the second year of the pilot.

Substitution Elasticity Comparison: SEP 2008 vs SEP 2009

<table>
<thead>
<tr>
<th>Elasticity</th>
<th>SEP 2008 (thi_diff= 6.65)</th>
<th>SEP 2009 (thi_diff= 5.25)</th>
<th>SEP 2009 (thi_diff= 6.65)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price only</td>
<td>-0.096</td>
<td>-0.121</td>
<td>-0.153</td>
</tr>
<tr>
<td>Price+ORB</td>
<td>-0.136</td>
<td>-0.152</td>
<td>-0.193</td>
</tr>
<tr>
<td>Price+ORB+TECH</td>
<td>-0.180</td>
<td>-0.184</td>
<td>-0.233</td>
</tr>
</tbody>
</table>

Note: Average SEP 2008 thi_diff=6.65 and Average SEP 2009 thi_diff=5.25

- SEP 2009 substitution elasticities are higher than those of the SEP 2008

Daily Elasticity Comparison: SEP 2008 vs SEP 2009

<table>
<thead>
<tr>
<th>Elasticity</th>
<th>SEP 2008 (ln_thi= 4.31)</th>
<th>SEP 2009 (ln_thi= 4.31)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>-0.039</td>
<td>-0.039</td>
</tr>
</tbody>
</table>

Note: Average SEP 2008 ln_thi=4.31 and Average SEP 2009 ln_thi=4.31

- SEP 2009 daily elasticity is equal to that of the SEP 2008
We solve the demand system simultaneously to calculate the peak demand impacts.

In 2008, we find that peak demand impacts are in the range of 18 to 33 percent.

Although the customers were more price elastic in 2009, the rebate level was less than that in 2008. Resulting peak impacts are in the range of 23 to 31 percent.

<table>
<thead>
<tr>
<th>SEP</th>
<th>Rate</th>
<th>Price only</th>
<th>Price + ORB</th>
<th>Price + ORB + ET</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008</td>
<td>DPP</td>
<td>20.1%</td>
<td>-</td>
<td>32.5%</td>
</tr>
<tr>
<td>2008</td>
<td>PTRL</td>
<td>17.8%</td>
<td>23.0%</td>
<td>28.5%</td>
</tr>
<tr>
<td>2008</td>
<td>PTRH</td>
<td>21.0%</td>
<td>26.8%</td>
<td>33.0%</td>
</tr>
<tr>
<td>2009</td>
<td>PTR</td>
<td>22.6%</td>
<td>26.9%</td>
<td>31.0%</td>
</tr>
</tbody>
</table>
Conclusions

We pooled SEP 2008 and 2009 pilot datasets to investigate the persistence of customer price responsiveness

- We found that BGE SEP customers were persistent in their price responsiveness in the 2nd year of the program despite milder summer conditions
- In fact, SEP customers increased their elasticities suggesting that learning and adaptation were taking place
References

The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governments around the world. We combine in-depth industry experience, rigorous analyses, and principled techniques to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

- Climate Change Policy and Planning
- Cost of Capital
- Demand Forecasting and Weather Normalization
- Demand Response and Energy Efficiency
- Electricity Market Modeling
- Energy Asset Valuation
- Energy Contract Litigation
- Environmental Compliance
- Fuel and Power Procurement
- Incentive Regulation
- Rate Design, Cost Allocation, and Rate Structure
- Regulatory Strategy and Litigation Support
- Renewables
- Resource Planning
- Retail Access and Restructuring
- Risk Management
- Market-Based Rates
- Market Design and Competitive Analysis
- Mergers and Acquisitions
- Transmission

sanem.sergici@brattle.com
44 Brattle Street
Cambridge, MA 02138