Dynamic Pricing: Past, Present, and Future

Presented to:
Canadian Association of Members of Public Utility Tribunals
Queen’s University, Kingston, Ontario

Presented by:
Sanem Sergici, Ph.D.
Ahmad Faruqui, Ph.D.

06/14/2011
Agenda

1. Background in dynamic pricing
2. What have we learned from dynamic pricing pilots?
3. Accommodating objections to dynamic pricing
4. Potential of dynamic pricing
5. References
Dynamic pricing (DP) comes in a wide variety of forms

<table>
<thead>
<tr>
<th>Rate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time-of-Use (TOU)</td>
<td>Charges a higher price during all weekday peak hours and a discounted price during off-peak and weekend hours</td>
</tr>
<tr>
<td>Super Peak TOU</td>
<td>Similar to the TOU with the exception that the peak window is shorter in duration (often four hours), leading to a stronger price signal</td>
</tr>
<tr>
<td>Critical Peak Pricing (CPP)</td>
<td>Customers are charged a higher price during the peak period on a limited number of event days (often 15 or less); the rate is discounted during the remaining hours</td>
</tr>
<tr>
<td>CPP-TOU Combination</td>
<td>A TOU rate in which a moderate peak price applies during most peak hours of the year, but a higher peak price applies on limited event days</td>
</tr>
<tr>
<td>Peak Time Rebate (PTR)</td>
<td>The existing flat rate combined with a rebate for each unit of reduced demand below a pre-determined baseline estimate during peak times of event days</td>
</tr>
<tr>
<td>Flat Real Time Pricing (RTP)</td>
<td>A rate with hourly variation that follows LMPs, but with capacity costs allocated equally across all hours of the year</td>
</tr>
<tr>
<td>Critical Peak RTP</td>
<td>A rate with hourly variation based on LMPs and with a capacity cost adder focused only during event hours, creating a strong price signal at these times</td>
</tr>
</tbody>
</table>

Note: TOU rates are not considered dynamic, yet included in this slide to give a complete picture of time-based pricing products.
What is the current state of DP deployment?

TOU is the most commonly implemented time-based rate option for all customer classes and is largely deployed as a full-scale offering.

CPP is more commonly tested through pricing pilots at this stage—although there are full-scale implementations.

RTP is most typically deployed as a full-scale offering for C&I customers.

PTR has only been tested through pilots as of yet— but this is likely to change.

C&I customers are offered time-based rates much more frequently than the residential class and are more likely to be exposed to dynamic rates like RTP and CPP.
Agenda

1. Background in dynamic pricing

2. What have we learned from dynamic pricing pilots?

3. Accommodating the objections

4. Potential of dynamic pricing

5. References
1. Customers do respond to DP

Impacts from Residential Pricing Pilots

Pricing Pilot

Peak Reduction

0% 10% 20% 30% 40% 50% 60%
Why the variation in impacts?

Rate, technology, and pilot design are only part of the puzzle

Other factors include

- Price signal
- Central-air conditioning (CAC) saturation
- Other appliance saturation
- Type of enabling technology
- Weather
- Sociodemographic factors
- Marketing/incentives/education
2. Enabling technologies boosts the impacts

Peak Reductions by Rate and Technology

- TOU
- TOU w/ Tech
- PTR
- PTR w/ Tech
- CPP
- CPP w/ Tech
- RTP
- RTP w/ Tech

Peak Reduction (%) vs. Pricing Pilot
3. Customer response is not a novelty and persists over time

Several recent DP pilots have specifically tested the persistence of customer response when events are called across two or three days in a row and found persistence.

At least two pilots that have run for multiple years have tested persistence across years and found persistence.

Two utilities in Arizona have observed persistence in customer response to time-of-use rates across decades.
4. Pilots are good indicators of the impacts in full-scale deployments when they are carefully designed

In the best pilots, treatments and control customers are randomly selected to be representative of the population at large.

Pre-treatment measurements were taken to net out any pre-existing differences between the treatment and control groups.

Pilot design and roll-out approach must mimic utility’s full deployment approach as much as possible.
5. Low income customers do respond to DP

Low Income Customer Responsiveness
Relative to Average Customer Response

- California SPP: CARE vs. Average
- PG&E SmartRate 2009: CARE vs. Average
- PG&E SmartRate 2008: CARE vs. Average
- CL&P's PWEP Program (PTP): Hardship vs. Average
- California SPP: Low Income vs. Average
- Pepco DC (price only): Low Income vs. Average Residential
- BGE 2008: Known Low Income vs. Known Average Customer
- CL&P's PWEP Program: Known Low Income vs. Known Average Customer
6. Most low income customers will be better off under DP due to their flat load profiles

Distribution of Dynamic Pricing Bill Impacts
- Low Income Customers on CPP Rate -

Notes: Bill Simulation results for a large urban utility.
Assumes an average of 10% load response for low income customers
7. Customers are satisfied with DP once they experience it

Customers are already familiar with the idea of dynamic pricing

- Cell phone minutes
- Airline tickets and hotel rooms
- Toll roads and bridges
- Sporting events and shows

In the case of electricity, they tend to associate it with high prices and price volatility

- When they are asked if they want it, in focus group settings or telephone interviews, the majority say no
- When they have lived through it, either in full-scale programs or in pilot settings, the vast majority report high satisfaction and want to continue with the rates
8. Direct load control programs are not substitutes but complements to DP programs

Direct load control (DLC) only applies to customers who have air conditioning or water heating; other end-uses in the home are not incentivized to respond during critical events.

Payments are made whether or not events are called and without smart meters, it is hard to verify that the controlled load has actually responded.

Traditionally, direct load control is only triggered by reliability events.

In general, DP can yield higher load responsiveness when combined with enabling technology than DLC and it can be triggered by either economic or reliability events.
9. We also know more about potential pilot implementation “landmines”

- Test rates with significant price differentials
- Set or program enabling technologies during installation
- *Carefully* recruit via multiple channels
- Manage customer expectations
- Be prepared to explain bill increases
- Provide feedback about savings quickly and frequently
- Communicate with external *and* internal stakeholders
- Document reasons for unenrollment
- Beware of unrepresentative meter footprint
- Track “walk-ins”

More detail in a forthcoming Brattle paper…
10. After all the experimenting, there are still things we know poorly

Conservation impact of dynamic pricing needs more research
- Several recent pilots suggest 0% to 1% savings
- Other studies have suggested 2% to 4%

Customers respond equally to peak time rebates and critical peak pricing in some tests and unequally in other tests

Customers respond to informational feedback about energy usage, prices and utility bills
- By how much they respond remains uncertain
- The impact on peak demand is uncertain
- Whether either energy or peak demand response would persist over time is also uncertain

The specific impact of web portals, in-home displays and energy orbs needs more research

Impact of socio-demographic variables (e.g., income, education) on customers’ price responsiveness also need more research
Several new concepts will be tested in the DOE-funded consumer behavior studies

- Variable peak pricing
- PTR as a transition tool
- Technology acceptance
- Pre-payment billing
- Sample selection methods
- Pricing period duration
- Bill protection
- Information access patterns
- Enhanced education
- Test-and-learn
Agenda

1. Background in dynamic pricing
2. What have we learned from dynamic pricing pilots?
3. Accommodating objections to dynamic pricing
4. Potential of dynamic pricing
5. References
Accommodating objections to dynamic pricing

Creating customer buy-in
- Changing a century-old ratemaking practice will require significant customer education and management of expectations

Offering tools
- Improved billing information
- In-home information displays
- Enabling/automating technologies

Two-part rate design
- Allows customers to manage the amount of usage exposed to the dynamic rate

Peak-time rebates
- Creates a “no lose” situation for all customers, while still providing the incentive to reduce peak usage
Accommodating the objections (cont’d)

Bill protection
- A “no losers” proposition for the first few years
- Phase out over time as part of educational initiative

Crediting customers for the hedging premium
- Flat rates sometimes include a premium to account for the price and volume risk associated with wholesale power purchases
- If price fluctuations are passed through to the retail rate, this risk is transferred to the customer and the premium is eliminated or reduced

Creating a menu of tariffs anchored around dynamic pricing
- Give customers the option of migrating to other time-varying rates or even hedged flat rates
Current risk-reward frontier for electric rates
Agenda

1. Background in dynamic pricing
2. What have we learned from dynamic pricing pilots?
3. Accommodating the objections
4. Potential of dynamic pricing
5. References
Aggressive pursuit of dynamic pricing can lead to substantial reductions in peak demand

Source: FERC DR Potential Study (2009)
Much of the untapped potential for dynamic pricing resides in the residential class

Source: FERC DR Potential Study (2009)
Dynamic pricing would improve the economics of new smart grid technologies

<table>
<thead>
<tr>
<th>Smart Grid Element</th>
<th>Effect of Dynamic Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rooftop solar applications</td>
<td>Rewards self-generation during peak (sunny) hours</td>
</tr>
<tr>
<td>Distributed storage</td>
<td>Provides price differential to encourage load shifting</td>
</tr>
<tr>
<td>Plug-in electric vehicles</td>
<td>Encourages more efficient charging patterns</td>
</tr>
<tr>
<td>In-home information displays</td>
<td>Improves intrinsic value of the device to the owner</td>
</tr>
<tr>
<td>Grid-friendly appliances</td>
<td>Provides price signal to encourage peak savings</td>
</tr>
</tbody>
</table>
Agenda

1. Background in dynamic pricing

2. What have we learned from dynamic pricing pilots?

3. Accommodating the objections

4. Potential of dynamic pricing

5. References
References

Sanem Sergici is a Senior Associate of The Brattle Group with expertise in electricity markets, industrial organization and applied econometrics. At Brattle, the focus of Dr. Sergici’s work has been on assisting electric utilities, regulators, research organizations and wholesale market operators in the development of innovative demand response and energy efficiency portfolios and strategies. Dr. Sergici has expertise in the design and evaluation of dynamic pricing pilot programs, development of load forecasting models, and design of innovative rates for electric utilities. Her recent engagements include assisting the utilities in Michigan, Connecticut, Illinois and Maryland in the design and impact evaluation of their pricing and technology pilots. Dr. Sergici is a member of a Technical Advisory Group (TAG) for Smart Grid Investment Grant projects that was formed by the U.S. Department of Energy (DOE) and Lawrence Berkeley National Laboratory (LBNL). She has spoken at several industry conferences and published in several industry journals.

Dr. Sergici received her Ph.D. in Applied Economics from Northeastern University in the fields of applied econometrics and industrial organization. She also holds an M.A. in Economics from Northeastern University, and B.S. in Economics from Middle East Technical University (METU), Ankara, Turkey.

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group, Inc.
The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governments around the world. We combine in-depth industry experience, rigorous analyses, and principled techniques to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Climate Change Policy and Planning
Cost of Capital
Demand Forecasting and Weather Normalization
Demand Response and Energy Efficiency
Electricity Market Modeling
Energy Asset Valuation
Energy Contract Litigation
Environmental Compliance
Fuel and Power Procurement
Incentive Regulation
Rate Design, Cost Allocation, and Rate Structure
Regulatory Strategy and Litigation Support
Renewables
Resource Planning
Retail Access and Restructuring
Risk Management
Market-Based Rates
Market Design and Competitive Analysis
Mergers and Acquisitions
Transmission

sanem.sergici@brattle.com
44 Brattle Street
Cambridge, MA 02138