Renewable Integration Model Presentation

California Long-Term Procurement Plan Workshop

Energy Division
California Public Utilities Commission (CPUC)

CPUC Auditorium
San Francisco, CA

Presented by:
Judy Chang
Philip Hanser

August 25, 2010
Contents

Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design
RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs
Strengths of RIM
RIM Applications
Renewable Generation Characteristics

- Renewable energy provides significant environmental benefits
- Incorporating them into existing system consists of new challenges
- Some renewable resources have variable output; wind and solar with the following characteristics:
 - **Variability**: the magnitude of power output from one moment to the next can change dramatically
 - **Unpredictability**: sudden changes in generation output not well-forecasted

Sample Wind Profile for July Western Region of U.S.

Sample Solar Profile for January Western Region of U.S.

Sources: Calculated based on hourly wind generation data from TEPPC.
Motivation and Goals of the Renewable Integration Model (RIM)

PG&E’s Goal: Analyze and estimate resource requirements and costs associated with integrating various levels of variable generation resources

Various other wind integration analyses revealed that:

♦ Statistical processing to parameterize intra-hour volatilities is needed
 • Lack of granular historical data requires using assumptions to forecast future renewable energy production patterns
 • These intra-hour volatility assumptions drive results
♦ Many rely on production cost modeling to simulate full systems
 • Production cost simulations are not designed for intra-hour analyses
 • Difficult to determine if models represent actual operations and the use of reserves
♦ Most analyses ignore potential incremental capital costs associated with incremental resource additions

A simple, transparent and flexible model is needed
Introduction

Motivation for the Renewable Integration Model

Important Considerations When Choosing Model Design

RIM Methodology

• Review of RIM Inputs
• Calculation of Operating Flexibility Requirements
• Estimation of Resource Costs

Strengths of RIM

RIM Applications
The Renewable Integration Model (RIM) focuses on the central issues:

♦ Evaluate incremental service requirements
♦ Estimate magnitude of resources to provide those services
♦ Estimate variable and fixed costs

RIM is designed to achieve above goals with functional features below:

♦ Simple but careful
 • Uses simplifying assumptions to represent complex issues
 • Focus and care is placed on using all available information to best simulate reality
 • Runs quickly

♦ Transparent
 • Accepts user input assumptions
 • Uses fully transparent calculations

♦ Flexible
 • Can provide results across many scenarios and resource portfolios
 • User defines the analytical period and the system conditions
 • Can be updated as system and forecast capabilities change
 • Portable – based on Excel spreadsheets
Contents

Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design

RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs

Strengths of RIM
RIM Applications
RIM Overall Structure

Data Input
- Installed variable generation
- Detailed load & generation profiles
- Forecast errors for load & generation
- Costs of conventional generation

Calculations
- Estimate incremental operational requirements
- Estimate system’s reliability requirements
- Quantify resource requirements
- Estimate fixed and variable costs of integration

Output
- Flexible requirements (regulation, load-following, day-ahead commitment)
- New capacity required to integrate variable generation
- Mix of resources based cost assumptions
- Fixed and variable costs of integration

The Brattle Group
RIM Key Assumptions

Like all models, input assumptions drive model results. RIM has relatively few parameters:

- **Load**
 - Parameters that describe load forecast errors and load variability (can be derived from historical data)
 - Load growth
 - Alternatively, a future year load profile can be used

- **Wind and solar**
 - Parameters that describe forecast errors and output variability (can be derived from historical data)
 - Correlation coefficients for generation output across sites

- **Resource costs and characteristics**
 - Capital costs
 - Heat rates
 - Fuel costs
 - Emissions costs

All default parameters can be updated and changed by users
Contents

Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design
RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs
Strengths of RIM
RIM Applications
RIM uses CAISO’s definition regulation and load following

The CAISO differentiates the two services by the scheduling process and the timing of the forecast

♦ Load following = difference between the hourly schedule (shown as red line) and the 5-minute schedule (blue line) of generation to meet forecast load: the area shaded light blue

♦ Regulation = difference between the 5-minute schedule (blue line) and the actual load/wind (green line): the area shaded red

Source: CAISO Integration of Renewable Resource, November 2007
Types of Services Needed to Compensate for Variability and Unpredictability

<table>
<thead>
<tr>
<th>Minute-by-minute actual</th>
<th>5-minute forecast</th>
<th>Hour-ahead forecast</th>
<th>Day-ahead forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra 5-min volatility</td>
<td>5-min forecast error</td>
<td>Intra-hour volatility</td>
<td>Hour-ahead forecast error</td>
</tr>
<tr>
<td>Load-following</td>
<td></td>
<td>Regulation</td>
<td></td>
</tr>
<tr>
<td>DA Commitment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Regulation
- RIM uses parameters that describe deviations from relevant scheduling
- Two primary parameters: intra 5-min volatility and average 5-minute forecast error (next slide explains)

Load following
- RIM uses parameter that describe deviations between the 5-minute and the hour-ahead schedules
- Two primary parameters: intra-hour volatility and average hour-ahead forecast error

Day-ahead commitment
- Deviation between day-ahead and hour-ahead schedule

The model uses all 5 statistical parameters shown in diagram
RIM uses statistical relationships of schedules and actuals to estimate services requirements

Regulation requirement for each 5 minute interval is estimated with two components of variance of load and generation:

1. **5-minute forecast error**, PLUS
2. **intra-5-minute volatility**

Analogous estimation methodology is applied to load-following

Day-ahead commitment need uses forecast error only
RIM summarizes regulation, load-following and day-ahead commitment needs by season

♦ RIM uses the standard deviations to estimate the services needs
 • User can input the magnitude and the number of standard deviation used to determine the needs

♦ RIM takes into account the correlation between sites and forecast errors
 • All of which are parameterized and user-driven

♦ RIM reports the operational requirements for regulation, load following and day-ahead commitment for each season
Derivation of Resources Required for Integration

Assumptions:
♦ New or existing generating capacities can be used to provide the operational requirements of the system

Steps Taken:
♦ Estimate the magnitude of resources needed to meet the operational flexibility requirement after renewable resources are added to the system
♦ Estimate the resources needed to meet the reliability requirement of the system
 • Load plus planning reserves
♦ Compare the two and determine if additional resources will be needed above the planning reserve requirements
Steps in Estimating Resource Requirements

Reliability Requirement
- Forecast Peak Load
- Planning Reserve Margin
- Reliability Contribution of Renewables (NQC)

Operating Flexibility Requirement
- Hourly Load
- Hourly Operating Flexibility Services
- Hourly renewable generation

Additional Capacity Required for integration

Forecast Peak Load = Planning Reserve Margin + Reliability Contribution of Renewables (NQC) - Residual Reliability Requirement

Hourly Load = Operating Flexibility Hourly Requirement + Renewable Hourly Generation - Residual Operating Flexibility Requirement

The Brattle Group
Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design
RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs
Strengths of RIM
RIM Applications
Estimation of Fixed Costs

RIM uses 3 categories of inputs assumptions to derive the fixed cost of integration

- Fixed and variable costs of resources used for integration (e.g. CCs, CTs, storage, other technologies)
- The planning reserve requirement
- Composite load duration curve (e.g. load net of renewable generation, plus hourly operational requirements for integration).
Estimation of Variable Costs

RIM uses simplifying assumptions about operations to estimate variable costs:

♦ The cost of potential daily startups from resources to provide the needed services

♦ The cost of potential out-of-merit dispatch during ramp up and down time
 • Simulated with efficiency differential between in-merit and out-of-merit resources
 • This approach assumes the system potentially will need incremental resources to meet faster ramping during ramp up and down hours

♦ For meeting regulation needs, RIM can incorporate an efficiency penalty for all hours a resource must operate at a less than fully efficient set point
Observations from Other Recent Integration Analyses

Compared to production cost simulations, RIM’s variable cost estimation uses consistent methodology

♦ Regulation and load following are translated into regulation and other reserves such that certain resources are “held aside” to react if necessary

♦ When certain resources are held aside, the next resource must be used – either by demanding certain resources to be “on reserve”, or putting the in-merit resource on reserve and move up the dispatch curve to serve energy

♦ Some out-of-merit dispatch occurs – RIM simulate with using efficiency “penalty” between in-merit resource and the “next one up” on the dispatch ladder

♦ This is consistent with system operations

♦ All production efficiency assumptions can be adjusted by users
Contents

Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design
RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs
Strengths of RIM
RIM Applications
Primary Strengths of RIM

- Full transparency
- User control over key assumptions
- Clear & flexible cost methodologies
- Ease of updating parameters as better information is available
- Ease of adaptation to forecast improvements
- Accommodates up to four renewable generation categories
- Facilitates policy discussions
- Based on CAISO-equivalent service definitions
Contents

Introduction
Motivation for the Renewable Integration Model
Important Considerations When Choosing Model Design
RIM Methodology
 ♦ Review of RIM Inputs
 ♦ Calculation of Operating Flexibility Requirements
 ♦ Estimation of Resource Costs
Strengths of RIM
RIM Applications
RIM Applications

RIM can be utilized to:

♦ Quantify incremental effects of changes in generation portfolio
♦ Estimate potential cost savings associated improved generation forecast and/or operational processes
♦ Evaluate the potential effects of resource diversity among renewable generators
♦ Compare resource requirements and integration cost estimates across a range of potential renewable portfolio selections with fast model execution of scenario outcomes
♦ Evaluate the benefits/costs of alternative renewable portfolios prior to contracting
Questions and Answers
Appendix
To estimate the seasonal regulation need, we assume that it can be decomposed into 2 principal components:

- Intra-5-minute volatility (the difference between the actual 5-minute average and the actual 1-minute load/output)
- 5-minute forecast error (the difference between the actual 5-minute average and the 5-minute forecast (schedule))

In addition, RIM incorporates potential correlations between:

- The intra-5-minute load volatility and the 5-minute load forecast error
- The intra-5-minute renewables volatility and the 5-minute wind forecast error
- The 5-minute forecast error for load and the 5-minute forecast error for renewables
Quantifying Regulation

\[
\text{Regulation}_{\text{every 1 min}} = \text{Load}_{1\text{min}}^{\text{actual}} - \text{Load}_{5\text{min}}^{\text{forecast}} + \text{Wind}_{5\text{min}}^{\text{forecast}} - \text{Wind}_{1\text{min}}^{\text{actual}}
\]

(assume Wind stands for IR in general)

\[
= L_1^a - (L_5^a - \varepsilon_{5L}) + (W_5^a - \varepsilon_{5W}) - W_1^a
\]

define the difference between the 1-minute actual and the 5 min actual (which is really the average of five 1-minute observations) as:

\[
\delta_{L1m5m} = L_1^a - L_5^a
\]

\[
\delta_{W1m5m} = W_1^a - W_5^a
\]

As a result:

\[
\text{Regulation} = \delta_{L1m5m} + \varepsilon_{5L} - \delta_{W1m5m} - \varepsilon_{5W}
\]
Quantifying Regulation

\[\text{Var}(\text{Regulation}) = \text{Var}(\delta_L^{1m5m} + \varepsilon_{5L} - \delta_W^{1m5m} - \varepsilon_{5W}) \]

Assuming relevant correlations exists for only a few parameters, the above will simplify to:

\[\text{Var}(\text{Regulation}) = \text{Var}(\delta_L^{1m5m}) + \text{Var}(\varepsilon_{5L}) + \text{Var}(\delta_W^{1m5m}) + \text{Var}(\varepsilon_{5W}) + \\
+ 2\text{Cov}(\delta_L^{1m5m}, \varepsilon_{5L}) + 2\text{Cov}(\delta_W^{1m5m}, \varepsilon_{5W}) - 2\text{Cov}(\varepsilon_{5L}, \varepsilon_{5W}) \]
Quantifying Load Following Need

To estimate the seasonal load following need we assume that it can be decomposed into 3 principal components:

♦ Intra-hour volatility (the difference between the actual 5-minute average and the actual hourly average of load/output)
♦ 5-minute forecast error (the difference between the actual 5-minute average and the 5-minute forecast (schedule))
♦ Hour-ahead forecast error (the difference between the actual hourly average and the hour-ahead forecast (schedule))

In addition, the total variance of the load following need is also assumed to depend on the annual correlations between:

♦ The intra-hour volatility for load and the hour-ahead forecast error for load;
♦ The intra-hour volatility for renewables and the hour-ahead forecast error for renewables;
♦ The hour-ahead forecast error for load and the hour-ahead forecast error for renewables;
♦ The 5-minute forecast error for load and the 5-minute forecast error for renewables.
Quantifying Load Following Need

\[LF_{every \ 5 \ min} = Load^{5\text{min forecast}} - Load^{HA \ forecast} + Wind^{HA \ forecast} - Wind^{5\text{min forecast}} \]

\[\delta_{5m60m}^L = L^a_5 - L^a_{60} \]

\[\delta_{5m60m}^W = W^a_5 - W^a_{60} \]

Starting point for formulation

Actual 60-min avg. load
Actual 5-min avg. load

5-minute forecast error for load
5-minute forecast error for wind

Intra-hour volatility for load
Intra-hour volatility for wind

Rearranging, we get:

\[LF = L^a_5 - L^a_{60} + \varepsilon_{60L} - \varepsilon_{5L} - (W^a_5 - W^a_{60}) + \varepsilon_{5W} - \varepsilon_{60W} \]

Which simplifies to:

\[LF = \delta_{5m60m}^L + \varepsilon_{60L} - \varepsilon_{5L} - \delta_{5m60m}^W + \varepsilon_{5W} - \varepsilon_{60W} \]
Quantifying Load Following Need

\[
V ar(LF) = V ar(\delta_{5m}^{60m} + \varepsilon_{60L} - \varepsilon_{5L} - \delta_{5m}^{60m} + \varepsilon_{5W} - \varepsilon_{60W})
\]

Therefore, the variance of Load Following service is:

\[
V ar(LF) = V ar(\delta_{L}^{5m}60m) + V ar(\varepsilon_{60L}) + V ar(\varepsilon_{5L}) + V ar(\delta_{W}^{5m}60m) + V ar(\varepsilon_{60W}) + V ar(\varepsilon_{5W}) + 2\rho_{\delta_{L}^{5m}60m,\varepsilon_{60L}} \sqrt{V ar(\delta_{L}^{5m}60m)} V ar(\varepsilon_{60L}) + 2\rho_{\delta_{W}^{5m}60m,\varepsilon_{60W}} \sqrt{V ar(\delta_{W}^{5m}60m)} V ar(\varepsilon_{60W}) - 2\rho_{\varepsilon_{5L},\varepsilon_{5W}} \sqrt{V ar(\varepsilon_{5L}) V ar(\varepsilon_{5W})} - 2\rho_{\varepsilon_{60L},\varepsilon_{60W}} \sqrt{V ar(\varepsilon_{60L}) V ar(\varepsilon_{60W})}
\]
The day-ahead commitment need is expressed as the difference between the hour-ahead forecast and the day-ahead forecast.

The overall variance of the day-ahead commitment need is also assumed to depend on the correlations between:

- The day-ahead forecast error for load and the hour-ahead forecast error for load;
- The day-ahead forecast error for wind and the hour-ahead forecast error for renewables;
- The hour-ahead forecast error for load and the hour-ahead forecast error for renewables.
Quantifying Day-Ahead Forecast and Dispatch Errors (DAFD)

\[DAFD = Load^{HA\, forecast} - Load^{DA\, forecast} + Wind^{DA\, forecast} - Wind^{HA\, forecast} \]

\[Var(DAFD) = Var(\varepsilon_{DL} - \varepsilon_{60L} + \varepsilon_{60W} - \varepsilon_{DW}) \]
\[= Var(\varepsilon_{DL}) + Var(\varepsilon_{60L}) + Var(\varepsilon_{60W}) + Var(\varepsilon_{DW}) - 2\rho_{\varepsilon_{60L},\varepsilon_{DL}} \sqrt{Var(\varepsilon_{60L})Var(\varepsilon_{DL})} \]
\[- 2\rho_{\varepsilon_{60W},\varepsilon_{DW}} \sqrt{Var(\varepsilon_{60W})Var(\varepsilon_{DW})} \]
\[- 2\rho_{\varepsilon_{60L},\varepsilon_{60W}} \sqrt{Var(\varepsilon_{60L})Var(\varepsilon_{60W})} \]

- 5-minute (5) and hour-ahead (60) forecast error for load
- Starting point for formulation
- Hour-ahead (60) and day-ahead (D) forecast error for wind

Correlation
- Hour-ahead load forecast error, day-ahead load forecast error
- Hour-ahead wind forecast error, day-ahead wind forecast error
- Hour-ahead load forecast error, hour-ahead wind forecast error

The Brattle Group
A screening curve approach divides the resources needed between specified resource types (currently specified as CCs and CTs).

The screening curve uses fixed and variable costs assumptions to derive the proportions of generation resources.
Example of Using Screening Curve Analysis

Step 1

Diagram showing the relationship between MW, % of Annual Hours, Peak DA Incremental Load, Total Cost CT, and Total Cost CC.
Screening Curve Analysis Step 2

Peak + Capacity Margin = 2020 Peak DA Load x (1+15%)

Total Cost CT

MW

% of Annual Hours

Total Technology Cost ($/MW-yr)

The Brattle Group
Screening Curve Analysis Step 3

Peak + Capacity Margin = 2020 Peak DA Load \times (1 + 15\%)

Composite LDC = DA Load + IR + Regulation + LF + DA Error

Total Technology Cost ($/MW-yr)

Total Cost CT

Total Cost CC

MW

% of Annual Hours

0

14%
Screening Curve Analysis Step 4

Peak+Capacity Margin = 2020 Peak DA Load \times (1+15\%)

Peak+Capacity Margin - IR Capacity Credit

Total Cost CT

Total Cost CC

% of Annual Hours

MW

MW

Total Technology Cost ($/MW-yr)

OVERGEN

The Brattle Group
Screening Curve Analysis Step 5

[Graph showing Total Cost CT and Total Cost CC with labeled axes: MW, % of Annual Hours, Total Technology Cost ($/MW-yr)]

- Peak+Capacity Margin-IR Capacity Credit
- 14% % of Annual Hours
Screening Curve Analysis Step 6

- Total Cost CT
- Total Cost CC
- MW
- % of Annual Hours
- Total Technology Cost ($/MW-yr)

The Brattle Group
Screening Curve Analysis Step 7

Peak + Capacity Margin = 2020 Peak DA Incremental Load \times (1 + 15\%)

Peak + Capacity Margin - IR Capacity Credit

Capacity Need for Integration

MW

% of Annual Hours

Total Technology Cost ($/MW-yr)

CT

CC

OVERGEN
Calculating Variable Costs

Annual Variable Cost (Regulation) = \[(\sum \text{seasonal REG need 1 hour of the day}) \times \text{start-up cost in Btu/kW of capacity} \times \right. \\
\left. \times \text{Gas Cost} \times \text{number of start-ups per day} \right] + \\
\left. +[(\sum \text{morning peak hours} \times \text{hourly seasonal regulation need}) \times \text{Min Load Factor} \times \\
\left. \times ((\text{CT-CC HR differential}) \times \text{Gas Cost}) \right] \times 2 + \\
\left. + (\text{all hours of the year}) \times (\text{Inefficiency HR Penalty}) \times \text{Gas Cost} \right]

Annual Variable Cost (Load Following) = \[(\sum \text{seasonal LF need 1 hour of the day}) \times \text{start-up cost in Btu/kW of capacity} \times \\
\left. \times \text{Gas Cost} \times \text{number of start-ups per day} \right] + \\
\left. +[(\sum \text{morning peak hours} \times \text{hourly seasonal LF need}) \times \text{Min Load Factor} \times \\
\left. \times ((\text{CT-CC HR differential}) \times \text{Gas Cost}) \right] \times 2

Annual Variable Cost (DA Commitment) = \[(\sum \text{seasonal DA need 1 hour of the day}) \times \text{start-up cost in Btu/kW of capacity} \times \\
\left. \times \text{Gas Cost} \times \text{number of start-ups per day} \right] + \\
\left. +[(\sum \text{morning peak hours} \times \text{hourly seasonal DA Commitment need}) \times \text{Min Load Factor} \times \\
\left. \times ((\text{CT-CC HR differential}) \times \text{Gas Cost}) \right] \times 2 \]