Negative Pricing in Wholesale Energy Markets

Presented to
Non-Emitting Resources Subcommittee

Prepared by
Kathleen Spees
Nicole Irwin
Judy Chang
John Imon Pedtke
Emily Shorin
Maria Castaner
Matthew Witkin

November 30, 2018
Agenda

Overview

What Are the Drivers of Negative Pricing?

Are Negative Prices Efficient?

Jurisdictional Scan

Takeaways
Overview
NERSC is Studying the Causes, Impacts, and Options for Mitigating Negative Prices

We have been asked to review the questions that stakeholders have posed on the role of negative pricing in Ontario’s highly decarbonised electricity system:

Questions from the NERSC Terms Of Reference

4.3.3. What are the market efficiency impacts of sustained negative pricing?

4.3.4. What options are available to mitigate or address market inefficiencies from sustained negative pricing?

4.3.5. What approaches are being considered in other jurisdictions to manage these challenges and what lessons can Ontario learn from other jurisdictions?
Overview

Ontario Prices Were Negative 19% of the Time in 2017

Ontario has had an increasing frequency of low or negative prices, with corresponding high curtailments of clean energy resources.

A decrease in average annual energy prices due to a combination of factors, including:
- low gas prices
- decreases in demand
- an increase of zero marginal cost resources

Sources: Hourly Ontario Energy Prices taken from IESO Data Directory. Curtailments taken from IESO year-end data and OPG’s annual & financial reports. Water rental charge and property tax calculated from Ontario Ministry of Finance, assuming $43/MWh contract price and over 700 GWh/year generation.
Overview

Negative Pricing Occurs in Other Jurisdictions

Ontario has historically experienced more negative prices due to (i) low gas prices, (ii) decreasing demand (e.g. 2008 recession, increase in conservation), (iii) increase in low marginal resources, and (iv) design inefficiencies (e.g. two schedule and RTGCG).

Agenda

Overview

What Are the Drivers of Negative Pricing?

Are Negative Prices Efficient?

Jurisdictional Scan

Takeaways
Drivers

What Are the Drivers of Negative Pricing?

Several drivers combine to produce more frequent, severe, and sustained negative pricing:

<table>
<thead>
<tr>
<th>Drivers of Negative Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Surprises</td>
</tr>
<tr>
<td>Surplus Supply</td>
</tr>
<tr>
<td>Inflexible Baseload</td>
</tr>
<tr>
<td>Transmission Constraints</td>
</tr>
<tr>
<td>Contract & Policy Incentives</td>
</tr>
</tbody>
</table>
Drivers

Contractual and Policy Incentives to Offer at Negative Prices

Policies like the U.S. production tax credit (PTC) and contracts like Ontario’s Feed-in-Tariff (FIT) pay even during negative price hours.

Wind Real-Time Offers in MISO
(Typical Offer Curve on Sample Date Nov. 15, 2012)

Pre-Tax Value of the Production Tax Credit

Wind Plant Makes Money at any Price above -$37/MWh

Example hour:
- $20 Energy Price
+ $37 PTC Value
= $17 Net Revenue

Note: PTC value and tax rate shown here were relevant at time of offer curve. PTC Credit = PTC ÷ (1 - 40% tax rate) = $22/MWh ÷ (1-40%) = $36.67/MWh.
Drivers

Surplus Baseload and Intermittent Supply

The biggest driver of negative pricing in Ontario is an abundance of baseload & intermittent supply that cannot always be absorbed.

Sources: Illustrative figure based on data for November 19th, 2017. Found on IESO data directory. Hourly curtailments taken from SIM calibration case from NERSC Phase 2 Modelling Exercise.
Drivers

Thermal Plant Minimum Generation & Other Constraints

Nuclear and thermal plants contribute to negative pricing & curtailments via minimum generation, run time, and down time constraints.

Wind curtailments when baseload plants cannot reduce output below minimum generation level.

Notes: Figure represents illustrative scenario of one wind plant and one gas CC plant meeting demand.
Drivers
Operational Uncertainties at the Time of Unit Commitment Decisions

Real time “surprises” including higher output from variable resources or lower demand can produce excess supply conditions (ramping & other intra-day constraints create a similar effect)

Day-Ahead Net Load Forecast

Day-Ahead: ISO Turns on Enough Nuclear and Thermal Supply to Meet Expected Net Load

Fleet-Wide Minimum Generation (Real-Time Net Load Below this Level will Induce Curtailments)
Locational markets reveal where transmission bottlenecks induce negative prices & curtailment, even if other sub-regions have high prices. Inefficient system export barriers have a similar effect.

Agenda

Overview

What Are the Drivers of Negative Pricing?

Are Negative Prices Efficient?

Jurisdictional Scan

Takeaways
Efficiency

Are Negative Prices Efficient?

YES

Negative prices use market-based signals to prioritize curtailments and incentivize system flexibility during surplus generation events.

BUT

Large, sustained negative prices or resource curtailments often indicate an underlying inefficiency in fleet mix, operations, market incentives, transmission planning, or policy.

The Efficiency Implications of Negative Pricing Has Several Layers/Perspectives:

- Individual Assets’ Value
- Fleet-Wide Operating Costs
- Fleet-Wide Investment + Transmission Costs
- Environmental Policy Goals

Offering at Negative Prices Can Maximize Private Returns for an Individual Asset

Enabling negative offers is **efficient** at the resource-specific level, because it aligns private incentives with prices and dispatch signals.

Wind Output

- Offer at $-37/MWh
- Offer at $0/MWh
- No curtailments

Asset Net Revenues

- $-37/MWh offer price optimizes asset value

- Total Net Revenue
- Net Energy Revenue
- PTC Value
- Gross Revenues Offset by Negative Energy Prices
- No curtailments
- Offer at $0/MWh
- Offer at $-37/MWh
Negative pricing may reveal **underlying inefficiencies** in private incentives that may ultimately drive higher fleet-wide operating costs.

Do negative prices help minimize system production cost?

<table>
<thead>
<tr>
<th>Yes if...</th>
<th>&</th>
<th>No if...</th>
</tr>
</thead>
</table>
| - They incentivize flexibility and storage | - Offers deviate from true marginal cost due to contract, tax, FIT, or REC incentives
- Inflexible baseload resources are protected from negative prices via uplift payments |
Efficiency

Excess Locational Negative Pricing Can Indicate Underlying Inefficiencies

Negative pricing *efficiently* reflects over-supply in a bottlenecked sub-region. But extensive negative pricing can sometimes reveal other *underlying inefficiencies*.

Potential Underlying Inefficiencies Driving Excess Locational Negative Prices

<table>
<thead>
<tr>
<th>Operating Timeframe</th>
<th>Investment Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resources</td>
<td></td>
</tr>
<tr>
<td>• Operating incentives exceed locational value (e.g. CMSC-down payments)</td>
<td>• Excess incentives (or lack of disincentives) for supply to locate in generation pockets</td>
</tr>
<tr>
<td>Transmission</td>
<td></td>
</tr>
<tr>
<td>• Barriers to efficient 5-min real-time intertie scheduling, preventing efficient export</td>
<td>• Insufficient development of cost-effective transmission projects</td>
</tr>
</tbody>
</table>
Efficiency

Negative Pricing May Indicate Policy Incentives Partly Misaligned with Objectives

Environmental payments awarded in negative price times **may not fully align** incentives with carbon goals. Aligning private incentives with goals can reduce the cost of the policy.

New England System Costs

Under Different Environmental Policy Structures

Agenda

Overview

What Are the Drivers of Negative Pricing?

Are Negative Prices Efficient?

Jurisdictional Scan

Takeaways
Increased regulation requirement, considering a ramp product, transmission planning to enable wind

Price cap at $9,000/MWh, scarcity pricing, CREZ transmission buildout

"Multi-value" transmission planning; 5-minute ramping product, scarcity pricing, dispatchable intermittent resources

Capacity performance incentives, scarcity pricing, additional "replacement reserve" AS product, DR integration, proposal for dynamic clean attribute payments

Enhanced scarcity pricing to align with neighboring systems, coordinated intertie scheduling with ISO-NE and PJM

AS co-optimization, DR integration, scarcity pricing

Avoiding negative pricing has not been a goal by itself, but many efficiency- and flexibility-enhancing measures tend to mitigate the frequency and severity

5-min intertie scheduling, unbundled AS, new ramping product, transmission planning for renewables, footprint expansion for imbalance market

Mitigation Examples of Reforms that Mitigate Curtailments and Sustained Negative Pricing

Source: Map from ISO/RTO Council, isorto.org.
Mitigation

Texas: CREZ Transmission Developments
Reduced Frequency of Negative Prices

Incidences of negative prices decreased with introduction of Competitive Renewable Energy Zones to help relieve congestion.

Hourly real-time energy prices for ERCOT West from Ventyx (2018).
Growing intermittency and curtailment are a large reason for expanding the regional market and optimizing interties.

| Storage – increase the effective participation by energy storage resources. |
| Demand response – enhance DR initiatives to enable adjustments in consumer demand, both up and down, when warranted by grid conditions. |
| Time-of-use rates – implement time-of-use rates that match consumption with efficient use of clean energy supplies. |
| Minimum generation – explore policies to reduce minimum operating levels for existing generators, thus making room for more renewable production. |
| Western EIM expansion – expand the western Energy Imbalance Market. |
| Regional coordination – offers more diversified set of clean energy resources through a cost effective and reliable regional market. |
| Electric vehicles – incorporate electric vehicle charging systems that are responsive to changing grid conditions. |
| Flexible resources – invest in modern, fast-responding resources that can follow sudden increases and decreases in demand. |

Mitigation

California: Potential Impact of a Broader Regional Market on Curtailments

Expanding CAISO into a WECC-wide regional market could eliminate most negative pricing and renewable curtailments by 2030.

Source: CAISO. Senate Bill 350 Study: The Impacts of a Regional ISO-Operated Power Market on California: Volume 5
Mitigation

Emerging Best Practices for Environmental Policies Would Mitigate Negative Prices

Best practices for designing policy incentives for clean energy resources...

- **Product Definition** that matches the underlying objective (carbon abatement)
- **Unbundled Attributes** that maximize competition across markets and technologies
 - **Policymakers and Customers Choose** their own demand quantities and willingness to pay (no costs shifted to non-participants)

- **Technology-neutral** qualification and payments
 - **Broad regional competition**
 - **Mechanisms to mitigate regulatory risk** and ensure financeability at competitive costs

- **Care to ensure alignment with energy, ancillary, and capacity markets**

= will help mitigate negative prices

"Dynamic" attribute payments would not induce negative offer prices

- Flat payments over every hour
- Incentive to offer at negative energy prices during excess energy hours

- Payments scale in proportion to marginal CO₂ emissions (by time and location)
- Incentive to produce clean energy when and where it avoids the most CO₂ emissions
- No incentive to offer at negative prices

Dynamic payments for clean energy at the right times to displace emissions would help mitigate negative prices and enable storage.
Agenda

Overview

What Are the Drivers of Negative Pricing?

Are Negative Prices Efficient?

Jurisdictional Scan

Takeaways
Takeaways for Ontario

— Negative pricing is not a problem in itself, but it often signifies an underlying inefficiency.

— In recent years, Ontario has faced a perfect storm of these issues (e.g., oversupply of baseload, negative offer prices, hydro rental charges), causing extensive negative pricing and curtailments.

— Going forward, we expect curtailments to be significantly alleviated by reduction in nuclear supply and over time by the improved incentives under Market Renewal.

— Several other issues are not directly addressed by Market Renewal (hydro rental charges, intertie efficiency, flexibility products).

— Even if frequency of negative prices is largely reduced, continued effort toward addressing underlying inefficiencies will improve system performance, reduce costs, and avoid curtailments.
Contact Information

Kathleen Spees
Principal
Washington, D.C.
+1.202.419.3393
Kathleen.Spees@brattle.com

Judy Chang
Principal, Director
Boston, MA
+1.617.234.5630
Judy.Chang@brattle.com

Nicole Irwin
Associate
Boston, MA
+1.617.234.5663
Nicole.Irwin@brattle.com

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group, Inc. or its clients.
Our Practices and Industries

ENERGY & UTILITIES
- Competition & Market Manipulation
- Distributed Energy Resources
- Electric Transmission
- Electricity Market Modeling & Resource Planning
- Electrification & Growth Opportunities
- Energy Litigation
- Energy Storage
- Environmental Policy, Planning and Compliance
- Finance and Ratemaking
- Gas/Electric Coordination
- Market Design
- Natural Gas & Petroleum
- Nuclear
- Renewable & Alternative Energy

LITIGATION
- Accounting
- Analysis of Market Manipulation
- Antitrust/Competition
- Bankruptcy & Restructuring
- Big Data & Document Analytics
- Commercial Damages
- Environmental Litigation & Regulation
- Intellectual Property
- International Arbitration
- International Trade
- Labor & Employment
- Mergers & Acquisitions Litigation
- Product Liability
- Securities & Finance
- Tax Controversy & Transfer Pricing
- Valuation
- White Collar Investigations & Litigation

INDUSTRIES
- Electric Power
- Financial Institutions
- Infrastructure
- Natural Gas & Petroleum
- Pharmaceuticals & Medical Devices
- Telecommunications, Internet, and Media
- Transportation
- Water
Our Offices

BOSTON

NEW YORK

SAN FRANCISCO

WASHINGTON

TORONTO

LONDON

MADRID

ROME

SYDNEY