A New Approach to Strategic Planning in a High Distributed Resource Environment: Distributed Solar as a Case Study

PRESENTED BY
Sanem Sergici, Ph.D.

DECEMBER 9, 2020
NEXT-GEN SMART GRID VIRTUAL SUMMIT
The utility business model is evolving in the face of emerging disruptions.
A new approach to strategic planning is necessary

Traditionally, utility strategic analysis has relied on **scenario modeling**, a largely linear approach that projects key events and models using known relationships:

- In the UoF context, a scenario could involve modeling hypothetical renewable penetration levels (e.g., comparing 5%, 10%, or 20% rooftop solar photovoltaic (PV) penetration by a future date-certain) to assess the impacts on distribution equipment and on utility financials.

While scenario-based modeling can provide **informative snapshots** of possible future outcomes, they ignore important dynamics of exactly how or why a utility might end up in a particular situation:

- Scenario-based modeling may overlook important feedbacks and interactions that would make higher or lower DER penetration more likely than the assumed conditions.
- They are about “what-if,” not “why” or “how”.

Therefore, relying solely on scenario modeling approach falls short in UoF related strategic planning, where the path forward is not yet specified, but amenable to proactive management.
To address this need, Brattle developed a UoF modelling tool “CRISP” using System Dynamics

A **System Dynamics** model is essentially an influence diagram in which the relationships are mathematically defined and simulated over time:

- Causal loop diagrams represent relationships in a system
- Stocks and flows are used to track movement through a system
- Intuitive equations back up the causal loop diagrams and the stocks and flows

System Dynamics offers an integrated look at what are otherwise detailed but incomplete understandings of parts of the UoF problem(s)

“**Alternative outlooks**” in System Dynamics are merely projections of how interdependent change factors will evolve and affect each other:

- Example: higher PV outlook driven by cost declines and increased subsidies
- Enables identification and testing of path dependencies, accelerators, and tipping points
 - Facilitates conversation and visualization of key drivers and assumptions
 - Highlights mechanisms that can alter the rate or direction of change
Benefits of system dynamics based strategic planning

<table>
<thead>
<tr>
<th>Dynamic Modeling Framework</th>
<th>Visibility into inflection points</th>
<th>Assessment of path dependency</th>
<th>Convergence in internal stakeholder views</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provides a dynamic modeling framework to explore interdependent aspects of DER technology adoption, utility system planning, and eventually the utility’s bottom line</td>
<td>Explore inflection points, and emphasize the importance of addressing inefficiencies, cross-subsidies early on before they start to compound</td>
<td>Explore the effects of “path-dependent” decisions through variation in the timing, type, or extent of utility’s role in DER development, shifting towards new rate designs, or altering decoupling and cost reallocation mechanisms</td>
<td>Encourage sharing of information and viewpoints across utility planning groups, and leads to new insights about the planning issues</td>
</tr>
</tbody>
</table>
Example: Model of a distribution utility that is evaluating potential impacts of a proliferation of rooftop PV adoption
The model (developed for a distribution utility) allowed us to study alternative outlooks based on a set of drivers.

Starting with the *status quo* outlook, we investigated the impacts of and interactions among the following drivers:

- Rooftop solar adoption
- Default TOU rates
- Alternative regulatory frameworks (i.e. formula rates)
- RPS Policy/wholesale price interactions
- Decoupling (and its impact on rates)

Strategic questions to be answered:

- Do we expect solar adoption to slow and flatten after 2021? What if solar adoption pace continues?
- How would different possibilities of a redesigned NEM tariff change that outlook?
- Could electric vehicle adoption outweigh the negative load impacts of rooftop solar adoption?
- How does a default TOU rate affect solar adoption pace and the potential rate increases?
Adoption function is informed by local (and historical) customer preferences given the implied payback period

Base equation for adoption propensity:

- \(y = Beta \times e^{Alpha \times x} \)
- Beta is propensity to adopt at a given time over entire eligible population, a popularity factor
- Alpha (which is negative) is degree of customers’ sensitivity to implied payback period
- Dependent variable (y) is an estimate of the percent of remaining, eligible residential customers that adopted solar in a given year
- X is the calculated payback period, given the technology costs in a given year
CRISP is a platform for refining and implementing utility strategies

RECENT ENGAGEMENT

Brattle used CRISP to examine the potential risk of rooftop PV penetration for the utility’s financial performance. Project served to inform senior management about “death spiral” threat and supported a distribution utility regulatory filing.

RISKS AND OPPORTUNITIES

- EVs
- Rooftop PV
- IoT
- Future of Gas
- ...

- Adoption Forecasts
- Scenarios
- Risk Assessments
- Financial Performance
- Customer Impacts

- Aggressively Pursue
- Accommodate
- Wait and See/Go Slow
- Fight
- ...

CRISP

STRATEGIC POSITIONING

IMPLEMENTATION

- Load Forecast
- IRP
- Rate Design
- Pilot Programs
- Regulatory Filings
- PBR
- Capex

brattle.com | 9
Payback-based Solar Adoption and Generation (cont’d)

We fit historic data for adoption rate of eligible residential customers and calculated paybacks with exponential equations to derive parameters for adoption function.

Solar Adoption by State

- **California**: $y = 0.0706e^{-0.178x}$
- **Massachusetts**: $y = 0.0054e^{-0.058x}$
- **Arizona**: $y = 4.0102e^{-0.427x}$

We incorporate solar array cost projections and monthly generation profiles (module 4) based on typical solar system in a given service territory.

Monthly PV Generation (Residential PV System)

Source: Brattle Analysis of PVWatts
Utility financials and regulatory mechanisms are properly built in the model

- Important to calibrate the model to reflect the status quo operating mode of the utility
- Primary relationship is cost of service ratemaking based on rate base, O&M, and class allocations to reflect utility’s current ratemaking; produces integrated financial statements
 - It is possible to model alternative regulatory frameworks such as formula rates and multi-year rate plans
- Depreciation (tax and book) tracked dynamically in the SD model, e.g., adjusting if capex change or any changes to customer composition, load, rates, or decoupling cost allocations
- System dynamics model solves incrementally (year by year), comparing prior year results with goals to make next-year adjustments (with lags) to affordable capital and O&M to achieve net income targets
Lower PV Outlook

Solar adoption parameters
- Base (multi-state avg)
 - CS: Off
 - RPS Carve Out: Off
 - TOU: Off
 - Formula Rates: Off
 - NEM Cap (MW): 750

Residential Payback Period
- Residential Payback Period: 20 years
- Residential Rooftop: 15 years
- Residential Community Solar: 20 years

Total Distributed PV Capacity
- Trend from 2019 to 2039: Increasing
- 2019: 0 MW
- 2020: 2250 MW
- 2039: 4500 MW

RPS Total PV Gen Target
- Trend from 2019 to 2039: Increasing
- 2019: 0%
- 2020: 1%
- 2039: 2%

R Cumulative Decoupled Revenues
- Trend from 2019 to 2039: Increasing
- 2019: $0
- 2020: $30
- 2039: $60

R Rolling Avg. Bill Increase
- Trend from 2019 to 2039: Decreasing
- 2019: 0.05%
- 2020: 0.03%
- 2039: 0.02%

ROE
- Trend from 2019 to 2039: Decreasing
- 2019: 14%
- 2020: 7%
- 2039: 2%

R Distribution Variable Rate
- Trend from 2019 to 2039: Increasing
- 2019: $0
- 2020: $2
- 2039: $10
Higher PV Outlook

- *Residential Payback Period*
 - Year: 2019-2035
 - Graph showing the payback period for residential PV installations.

- *Residential Customers with Solar*
 - Year: 2019-2039
 - Graph showing the growth in customers with solar installations.

- *Total Distributed PV Capacity*
 - MW: 2019-2039
 - Graph showing the total distributed PV capacity.

- *RPS Total PV Gen Target*
 - Percent of Load: Year (Year)
 - Graph showing the PV generation target as a percentage of load.

- *R Cumulative Decoupled Revenues*
 - Year: 2019-2039
 - Graph showing cumulative decoupled revenues over time.

- *R Rolling Avg. Bill Increase*
 - Percent per Year: 2019-2039
 - Graph showing the rolling average bill increase.

- *ROE*
 - Percent: 2019-2039
 - Graph showing Return on Equity (ROE).

- *R Distribution Variable Rate*
 - EM/TV: 2019-2039
 - Graph showing distribution variable rates over time.

Solar adoption parameters
- CS: Off
- RPS Carve Out: On
- TOU: Off
- Formula Rates: Off
- NEM Cap (MW): 750
- PV Cost Reduction (%/year): 4%
- State Grant: $1,000
- % Rooftop Eligible: 35%
Higher PV Outlook + Cost Declines

- **Solar adoption parameters**
 - CS: Off
 - RPS Carve Out: On
 - TOU: Off
 - Formula Rates: Off
 - NEM Cap (MW): 750
 - PV Cost Reduction (%/year): 4%
 - State Grant: $1,000
 - % Rooftop Eligible: 35%

- **Residential Payback Period**
 - Residential Payback Period

- **Residential Customers with Solar**
 - Residential Rooftop
 - Residential Community Solar

- **Total Distributed PV Capacity**
 - Total Rooftop
 - Total CS

- **RPS Total PV Gen Target**
 - Distributed Solar Percent of Net Load
 - Solar Carve Out Target

- **R Cumulative Decoupled Revenues**

- **R Rolling Avg. Bill Increase**
 - Residential Rolling Avg. Bill Increase

- **ROE**
 - ROE

- **R Distribution Variable Rate**
 - Residential Variable Rate
Higher PV Outlook + Cost Declines + Increased Subsidies

Solar adoption parameters
- CS: Off
- RPS Carve Out: On
- TOU: Off
- Formula Rates: Off
- NEM Cap (MW): 1500
- PV Cost Reduction (%/year): 8%
- State Grant: $2,500
- % Rooftop Eligible: 35%

Utility specific parameters
- Off

Graphs show:
- Residential Payback Period
- Residential Customers with Solar
- Total Distributed PV Capacity
- RPS Total PV Gen Target
- R Cumulative Decoupled Revenues
- R Rolling Avg. Bill Increase
- ROE
- R Distribution Variable Rate
Rooftop + Community Solar

Solar adoption parameters
- CS On
- RPS Curve Out On
- TOU Off
- Formula Rates Off
- NEM Cap (MW) 750
- PV Cost Reduction (%/year) 4%
- State Grant $1,000
- % Rooftop Eligible 35%
- CS Developer Offer Based on Avoidable Market Rates
- CS Initial Potential 1000 MW
- CS Subscription Rate (%/month) 0.85%
- % Customers "Opting In" 25%

Utility specific parameters
- CS
- RPS Curve Out
- TOU
- Formula Rates
- NEM Cap (MW)
- PV Cost Reduction (%/year)
- State Grant
- % Rooftop Eligible
- CS Developer Offer
- CS Initial Potential
- CS Subscription Rate (%/month)
- % Customers "Opting In"
Time-of-Use Rates

Solar adoption parameters
- CS: On
- RPS Carve Out: On
- TOU: Off

Utility specific parameters
- Formula Rates: On
- NEM Cap (MW): 750
- PV Cost Reduction (%/year): 4%
- State Grant: $1,000
- % Rooftop Eligible: 35%
- CS Developer Offer: Based on Avoidable Market Rates
- CS Initial Potential: 1000 MW
- CS Subscription Rate: 0.85%
- % Customers "Opting In": 25%
- TOU Ratio (Energy Supply): 4
- TOU Ratio (Distribution): 5.2

- CS Developer Offer
- CS Initial Potential
- CS Subscription Rate
Time-of-Use Rates with High Ratios

Solar adoption parameters
- CS: On
- RPS Curve Out: On
- TOU: On

Utility specific parameters
- Formula Rates: Off
- NEM Cap (MW): 750
- PV Cost Reduction (%/year): 4%
- State Grant: $1,000
- % Rooftop Eligible: 35%
- CS Developer Offer: Based on Avoidable Market Rates
- CS Initial Potential: 1000 MW
- CS Subscription Rate: 0.85%
- % Customers "Opting In": 25%
- TOU Ratio (Energy Supply): 5
- TOU Ratio (Distribution): 6.0

Residential Payback Period
- Year: 2019, 2023, 2027, 2031, 2035
- Residential Payback Period

Residential Customers with Solar
- Year: 2019, 2023, 2027, 2031, 2035
- Residential Payback Period
- Residential Rooftop
- Residential Community Solar

Total Distributed PV Capacity
- MW: 0, 2250, 4500
- Year: 2019, 2023, 2027, 2031, 2035
- Total Rooftop
- Total CS

RPS Total PV Gen Target
- Percent of Load
- Year: 2019, 2023, 2027, 2031, 2035
- Distributed Solar Percent of Net Load
- Solar Curve Out Target

R Cumulative Decoupled Revenues
- Year: 2019, 2023, 2027, 2031, 2035
- Residential Cumulative Decoupled Revenues

R Rolling Avg. Bill Increase
- Percent per Year
- Year: 2019, 2023, 2027, 2031, 2035
- Residential Rolling Avg. Bill Increase

ROE
- Percent
- Year: 2019, 2023, 2027, 2031, 2035
- Residential ROE

R Distribution Variable Rate
- Percent
- Year: 2019, 2023, 2027, 2031, 2035
- Residential Variable Rate
Increased EV Load

- **Residential Payback Period**
- **Residential Customers with Solar**
- **Total Distributed PV Capacity**
- **RPS Total PV Gen Target**
- **R Cumulative Decoupled Revenues**
- **R Rolling Avg. Bill Increase**
- **ROE**
- **R Distribution Variable Rate**

Solar adoption parameters
- CS: On
- RPS Carve Out: On
- TOU: Off
- Formula Rates: Off
- NEM Cap (MW): 750
- PV Cost Reduction (%/year): 4%
- State Grant: $1,000
- % Rooftop Eligible: 35%
- CS Developer Offer: Based on Avoidable Market Rates
- CS Initial Potential: 1000 MW
- CS Subscription Rate (%/month): 0.85%
- % Customers “Opting In”: 25%
- Scalar on EV Load Forecast: 3

Utility specific parameters
- CS: Off
- TOU: On
- Formula Rates: On
- NEM Cap (MW): 750
- PV Cost Reduction (%/year): 4%
- State Grant: $1,000
- % Rooftop Eligible: 35%
- CS Developer Offer: Based on Avoidable Market Rates
- CS Initial Potential: 1000 MW
- CS Subscription Rate (%/month): 0.85%
- % Customers “Opting In”: 25%
- Scalar on EV Load Forecast: 3
Dr. Sanem Sergici is a Principal in The Brattle Group’s Boston, MA office specializing in program design, evaluation, and big data analytics in the areas of energy efficiency, demand response, smart grid and innovative pricing.

She regularly supports electric utilities, regulators, law firms, and technology firms in their strategic and regulatory questions related to retail rate design and grid modernization investments. Dr. Sergici has been at the forefront of the design and impact analysis of innovative retail pricing, enabling technology, and behavior-based energy efficiency pilots and programs in many states and regions including District of Columbia, Connecticut, Florida, Illinois, Maryland, Michigan, Ontario, CA and New Zealand. She has led numerous studies in these areas that were instrumental in regulatory approvals of Advanced Metering Infrastructure (AMI) investments and smart rate offerings for electricity customers. She has significant expertise in resource planning; economic analysis of distributed energy resources (DERs); their impact on the distribution system operations and assessment of emerging utility business models and regulatory frameworks.

Dr. Sergici is a frequent presenter on these matters and regularly publishes in academic and industry journals. She was recently featured in Public Utility Fortnightly Magazine’s "Fortnightly Under 40 2019" list. She received her Ph.D. in Applied Economics from Northeastern University in the fields of applied econometrics and industrial organization. She received her M.A. in Economics from Northeastern University, and B.S. in Economics from Middle East Technical University (METU), Ankara, Turkey.
The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governments around the world. We aim for the highest level of client service and quality in our industry.