Modernizing America’s Grid:
How can better planning deliver the grid we need?

Presented at:
New England Clean Energy Transmission Summit

Presented by:
Johannes Pfeifenberger

Boston
January 23, 2012
In this Presentation

Review of Historical and Future Transmission Investments

FERC Order 1000 and Opportunities for New England

Additional Reading / About Brattle / Contact Info
Significant recent and projected transmission additions are still well below additions made 40-50 years ago when much of the current grid was built.

[1]: Circuit miles of overhead electric lines from EEI's Historical Statistical Yearbook. Data excludes REA cooperatives.
[2]: Courtesy of the North American Electric Reliability Corporation. NERC data is only available for lines 200kV and above. Note: transmission line additions are calculated as the difference in existing transmission between the current and prior year (i.e. 2003 additions = 2003 miles - 2002 miles).
[3]: Ventyx Suite.
Historical Transmission Investment Dollars

1995-2010 Annual Transmission Investment of FERC-Jurisdictional Entities
(represent approx. 70% of total U.S. Transmission Investment)

Source: The Brattle Group based on FERC Form 1 data compiled by Global Energy Decisions, Inc., The Velocity Suite for investor owned utilities.
Historical Transmission Investment, Load Normalized

1995-2010 Load-Normalized Annual Transmission Investments of FERC-Jurisdictional Entities in RTO and Non-RTO Regions

- New England re-investment cycle is ahead of other regions, although mostly reliability (not renewables integration) focused

Initial formation of ISOs/RTOs occurred in 1996-1998; groupings reflect current RTO participation of investor-owned utilities.

Normalized transmission investments expressed as total annual investment dollars per MWh of retail sales

Sources and Notes: © 2012 The Brattle Group. The Brattle Group's analysis of FERC Form 1 data compiled in Ventyx's Velocity Suite.
Transmission Industry Investment is Increasing

U.S. Transmission Investments through 2015

$60-80 billion in projected (2011$) investment for 2011-15

Renewables Drive Significant Investment Activity

$180 Billion of Planned and Still Conceptual Transmission Projects as of 2010

Main Regions with Wind Generation Opportunities

Approx. 130 mostly conceptual and often overlapping projects (> $100 million each) for a total of over $180 billion

1/3 to 1/2 of these regional projects unlikely to be realized.

A significant portion of these proposed and often highly conceptual projects (many not yet part of regional planning efforts by RTOs) are driven by large-scale renewables integration.
U.S. Transmission Investment: 20-year Outlook

Brattle database for $180 billion of major projects

- $30 billion … already in RTO-approved plans
- $80 billion … additionally proposed (non-overlapping)

$50-100 billion in US-wide incremental transmission needed to integrate renewables:

- To satisfy existing state-level RPS requirements
 - $40-70 billion
- For higher of existing state and 20% federal RPS
 - $80-130 billion

$240-320 billion in investments through 2030 (in 2011$)

- Major reliability, economic, and renewables projects
- Local baseline investments, including lower voltages and facilities replacements
Review of Historical and Future Transmission Investments

FERC Order 1000 and Opportunities for New England

Additional Reading / About Brattle / Contact Info
FERC Order 1000

Jurisdictional transmission owners need to participate in regional and inter-regional planning efforts that produce:

- Regional transmission plans
- Regional cost allocations
- Interregional planning process (but no plans)
- Interregional cost allocation methods
- Specify non-incumbent process and eliminate federal ROFR

Important considerations:

- The rule applies only to “new” transmission facilities and allows different planning and cost allocation methods for different types of projects (e.g., reliability, market efficiency, public policy)
- Most ISOs/RTOs believe they are 90% compliant already, but “compliance” may not realize opportunities to fully address gaps in regional and interregional planning and cost allocation
Transmission Costs and Long-term Benefits

Transmission may seem expensive, but benefits can significantly impact the 50% wholesale portion of electricity bills, substantially reduce the cost of renewables, and stimulate the economy.

♦ Broad range of transmission benefits include:
 • Increased reliability and operational flexibility
 • Reduced congestion, dispatch costs, and losses
 • Renewables integration and environmental benefits
 • Lower capacity needs and generation costs
 • Increased competition and market liquidity
 • Insurance and risk mitigation benefits
 • Fuel diversification and fuel market benefits
 • Economic stimulus and development

♦ But quantification is difficult, benefits are wide-spread geographically, diverse in their impacts on market participants, and occur/change over decades. This makes benefit-cost studies and cost allocation very challenging.
Some Thoughts About New England

New England has made great progress toward upgrading its transmission system. However, concerns remain about ability to integrate most cost-effective renewables:

- An additional **$4-7 billion** of transmission investments might be needed to integrate remaining RPS needs
 - Based on experience with renewable transmission overlays and direct interconnection costs elsewhere, large-scale integration of renewables requires between $400-700 of transmission per kW of wind generation

- High costs of New England reliability upgrades may cause backlash, making it difficult to fund additional transmission needed to integrate the most cost-effective renewables

- RPS requirements are reviewed in some states, driving more locally developed projects at potentially higher total costs. Low gas prices and the slow economy has created more challenges for renewables

- North-south differences on transmission cost allocation for renewables makes it more difficult to develop cost-effective solutions

- NESCOE’s effort should increase collaboration to find most cost-effective transmission+renewables solution and agree on cost allocation
Some Thoughts About New England

Suboptimal regional transmission planning process:

♦ Separate evaluation processes for reliability, market efficiency, and public policy projects unlikely to find lowest-cost, integrated transmission solutions

♦ Still limited exploration of non-transmission alternatives (NTAs) in reliability planning process may result in over-spending on transmission solutions when lower-cost alternatives (including through FCM) may be available

NESCOE’s planning framework for public policy requirements is promising. However:

♦ The proposed multi-step process for public policy and solution for multi-purpose projects may not mitigate planning inefficiencies

♦ Proposed case-by-case and state-by-state cost allocation for public policy projects is complex undertaking that may significantly delay implementation
Additional Reading

“Comments of Peter Fox-Penner, Johannes Pfeifenberger, and Delphine Hou,” in response to FERC’s Notice of Request for Comments on Transmission Planning and Cost Allocation (Docket AD09-8).

Pfeifenberger, Testimony on behalf of Southern California Edison Company re: economic impacts of the proposed Devers-Palo Verde No. 2 transmission line, before the Arizona Power Plant and Transmission Line Siting Committee, Docket No. L-00000A-06-0295-00130, Case No. 130, September and October, 2006.
The Brattle Group provides consulting and expert testimony in economics, finance, and regulation to corporations, law firms, and governmental agencies around the world.

We combine in-depth industry experience, rigorous analyses, and principled techniques to help clients answer complex economic and financial questions in litigation and regulation, develop strategies for changing markets, and make critical business decisions.

Climate Change Policy and Planning
Cost of Capital
Demand Forecasting and Weather Normalization
Demand Response and Energy Efficiency
Electricity Market Modeling
Energy Asset Valuation
Energy Contract Litigation
Environmental Compliance
Fuel and Power Procurement
Incentive Regulation
Rate Design, Cost Allocation, and Rate Structure
Regulatory Strategy and Litigation Support
Renewables
Resource Planning
Retail Access and Restructuring
Risk Management
Market-Based Rates
Market Design and Competitive Analysis
Mergers and Acquisitions
Transmission

Johannes Pfeifenberger (hannes.pfeifenberger@brattle.com)
44 Brattle Street, Cambridge, MA 02138
617-864-7900 (www.brattle.com)