Collecting Allowed Revenues When Demand is Declining

PRESENTED TO:
Center for Research in Regulated Industries (CRRI)
31st Annual Western Conference

PRESENTED BY:
Henna Trewn, B.A.

CO-AUTHORS:
Ahmad Faruqui, Ph.D.
Léa Grausz, M.S.

June 28, 2018
Agenda

Framing the Problem

Options for Mitigating Volume Risk

Case Studies
The problem: Utility tariffs do not reflect utility cost structures

<table>
<thead>
<tr>
<th>Cost categories</th>
<th>Utility’s Costs</th>
<th>Customer’s Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable ($/kWh)</td>
<td>Variable = $60</td>
<td>Variable = $115</td>
</tr>
<tr>
<td>- Fuel/gas supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Operations & maintenance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed ($/customer)</td>
<td>Fixed = $10</td>
<td>Fixed = $5</td>
</tr>
<tr>
<td>- Metering & billing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Customer service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size-related (demand) ($/kW)</td>
<td>Demand = $50</td>
<td></td>
</tr>
<tr>
<td>- Transmission capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Distribution capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Generation capacity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Illustrative example for an electric utility.
This misalignment between rates and cost structure creates a revenue recovery risk

Utilities are at risk to under-recover their authorized revenues if actual consumption and demand differ from what is underlying the applicable billing determinants.

Some factors that impact utilities’ volumetric throughput are:

Customer Growth

Usage per Customer

Weather
Use per customer is declining and is projected to continue falling

U.S. Electricity Use per Capita, 1990–2030

Historical Forecast

Changes in economic conditions
Changes in consumer behavior and habits
New technology
Evolution in public policy

Utilities throughout the world have been working toward reducing this throughput risk.

While many jurisdictions have already implemented some regulatory mechanisms to reduce their throughput risk, the mechanisms used can differ significantly.

... how effective are the various mechanisms implemented at mitigating volume risk?

... how are different utilities including mechanisms to decouple throughput and revenue in their regulatory construct?
Agenda

Framing the Problem

Options for Mitigating Volume Risk

Case Studies
One option utilities have is to align rate design with their cost structure

Relying on fixed charges makes revenue less dependent on throughput
- Determine variable charge based on incremental cost to the utility of a customer’s consumption – recovering the remainder in the fixed charge

Some steps toward more cost-reflective rates have been taken
- Increasing fixed charges
- Adding demand charges to residential and small general service rates
- Creating separate customer classes for new technologies and distributed generation

However, rate design is also driven by other forces (e.g., fairness, bill stability), so some stakeholders have resisted fully cost-reflective rates

The **second-best option** to manage throughput risk is the use of regulatory mechanisms such as “true-ups”
Without changes in rate design, declining use per customer will impinge negatively on utility finances.

- **Consumption per customer declines**
- **Overall electric or gas demand decreases**
- **Customers invest in efficiency and distributed generation**
- **Utility volumetric charges increase**
- **Fixed costs per kWh/MMBtu increase**
Different regulatory mechanisms cover different levels of risk and provide different incentives

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Throughput Risks Covered</th>
<th>Risks of Delayed Recovery (Regulatory Lag)</th>
<th>Conservation Incentives for the Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full True Up</td>
<td>✓ Decline in usage per customer
 ✓ Decline in number of customers
 ✓ Variability in weather</td>
<td>Covers differences between forecast and actual billing determinants in future years</td>
<td>Broad</td>
</tr>
<tr>
<td>Weather Normalization Mechanism</td>
<td>✓ Variability in weather</td>
<td>Covers differences between forecast and actual weather impacts in future years</td>
<td>N/A</td>
</tr>
<tr>
<td>Lost Revenue Adjustment Mechanism</td>
<td>✓ Targeted revenue loss from expected impact of policy goal</td>
<td>Differences between forecast and actual losses may or may not be trued up in future years</td>
<td>Specific</td>
</tr>
</tbody>
</table>
Designing a mechanism to reduce throughput risk involves some tradeoffs

Covering more risk vs. reducing rewards
- e.g., weather normalization mechanism (retaining profit gains when number of customers grow) or full reconciliation

Straightforward implementation vs. incentivizing specific conservation programs
- e.g., reconciliation with authorized revenues or true-up based on kWh savings actually measured from utility programs

Reducing regulatory lag vs. ensuring cost recovery
- e.g., cost-reflective rate design in place before customer consumption or true-ups in future years

Greater oversight of utility costs vs. more efficient rate cases
- e.g., setting multi-year rate plans with rebasing of billing determinants and costs or allowing rates to adjust to static revenue requirement with true-up mechanisms
Agenda

Framing the Problem

Options for Mitigating Volume Risk

Case Studies
A broad spectrum exists

- PSE&G (Gas)
 - Weather Normalization Mechanism
- APS
- OG&E
- Alberta Gas Utilities
 - Annually-updated Revenue per Customer Cap with Weather Normalization Mechanism
- PG&E
- Ausgrid
 - Multi-year Rate Plan with Full True Up

Low

Mitigation of Throughput Risk

High
Where do we go from here?

On the revenue side, some utilities are “putting a band-aid” while others are passing the throughput risk to customers...

- First-best approach: better rate design
- Second-best approach: full true-ups; weather or lost revenue adjustment mechanisms

... but what about changes in cost between test years?

Should the ideal combination be the following?

- Fix rate structure to get more efficient pricing
- Use a true up to ensure that authorized revenue is collected
- Adjust authorized revenue each year to reflect anticipated changes in cost
Henna Trewn is a senior research analyst in The Brattle Group’s San Francisco, CA office. She supports utilities, energy companies, and government organizations across North America, Europe, and Australia on ratemaking methodology, renewable finance, market development, rate design, and business risk. She has past experience in energy and environmental policymaking at the local, state, and federal levels. Ms. Trewn holds a B.A. in Political Economy from the University of California, Berkeley.

Further questions on this presentation may be directed to Ms. Trewn or to Léa Grausz and Ahmad Faruqui (corresponding authors) at Lea.Grausz@brattle.com and Ahmad.Faruqui@brattle.com, respectively.

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group, Inc.
Appendix
Traditional cost of service regulation encourages utilities to increase demand...
... which is in contrast with current public policy and energy conservation goals

Traditional Cost-of-Service Regulation

Deliver Energy \rightarrow Earn Revenue \rightarrow Recover Costs/Earn Profit

Current Public Policy Objectives

Conserve Energy \rightarrow Earn Revenue \rightarrow Recover Costs/Earn Profit

\textit{v.}

Throughput Incentive Problem
Decoupling can remove the throughput incentive and help utilities manage growing volume risk.

Rate Regulation with Decoupling

Deliver Energy → Earn Revenue → Recover Costs/Earn Profit

Conserve Energy → Earn Revenue → Recover Costs/Earn Profit

Utility and Public Incentives Aligned

Current Public Policy Objectives
Public Service Electric & Gas - Gas Distribution (New Jersey)

<table>
<thead>
<tr>
<th>Throughput Risks Covered</th>
<th>Risks of Delayed Recovery (Regulatory Lag)</th>
<th>Conservation Incentives for the Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>× Decline in Usage per Customer</td>
<td>Covers differences between forecast and actual weather impacts in future years</td>
<td>N/A</td>
</tr>
<tr>
<td>× Decline in Number of Customers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>✓ Variability in Weather</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Limited Decoupling: weather normalization mechanism

- Traditional cost-of-service ratemaking, with base rates based on a historical test year
- Protection from weather variability, contingent on meeting capacity-reduction goals and earnings tests
Oklahoma Gas & Electric

Throughput Risks Covered

<table>
<thead>
<tr>
<th>Throughput Risks Covered</th>
<th>Risks of Delayed Recovery (Regulatory Lag)</th>
<th>Conservation Incentives for the Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>☑ Targeted revenue loss from expected impact of policy goal</td>
<td>Differences between forecast and actual losses may or may not be trued up in future years</td>
<td>Specific</td>
</tr>
</tbody>
</table>

Limited Decoupling: variable peak pricing program and a lost revenue adjustment mechanism

- Traditional cost-of-service ratemaking, with base rates based on a historical test year
- Rider on customer’s bill, calculated based on estimated recoverable kWh savings from utility energy efficiency and demand response programs
 - Trued up to account for actual (verified) savings
- Some protection from consumption trends and targeted revenue losses from policy programs
Arizona Public Service

Limited Decoupling: two- and three-part rates offered to residential customers and a lost fixed cost revenue adjustment

- Traditional cost-of-service ratemaking, with base rates based on a historical test year
- Percentage charge applied to customer’s total bill, calculated based on estimated recoverable kWh savings from utility energy efficiency programs and distributed generation
 - Trued up to account for actual (calculated) savings
- Some protection from consumption trends and targeted revenue losses from policy programs
Limited Decoupling: five-year rate plan; revenue-per-customer cap with weather normalization account

- Base revenues per customer increase with inflation, less a productivity offset
- Revenues are adjusted to reflect changes in the number of customers but not changes in use per customer
- Utility is protected from change in consumption per customer and weather variability, but not from change in number of customers
Pacific Gas & Electric (CA)

Full Decoupling: 3-year multi-year rate plan with full true-up mechanism

- Base rates are set based on a combination of historical and forecast billing determinants for the first plan year
- Revenue requirement is escalated during plan term based on modeled parameters for various cost categories
- Annual reconciliation (true-up) of authorized revenues with non-weather-adjusted actual revenues

<table>
<thead>
<tr>
<th>Throughput Risks Covered</th>
<th>Risks of Delayed Recovery (Regulatory Lag)</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Decline in Usage per Customer</td>
<td>Covers differences between forecast and actual billing determinants in future years</td>
</tr>
<tr>
<td>✓ Decline in Number of Customers</td>
<td></td>
</tr>
<tr>
<td>✓ Variability in Weather</td>
<td></td>
</tr>
</tbody>
</table>

Conservation Incentives for the Utility: Broad
Ausgrid – Electricity Distribution (Australia)

Full Decoupling: 5-year multi-year rate plan with full true-up mechanism

- Base revenues are set based on a multi-year forecast of O&M and tax costs, depreciation, and return, and rate base includes forecast capex; includes assumption on productivity improvement
- Authorized revenue is adjusted each year to match forecast
 - Rates are smoothed over plan term (equal, annual real-term increase or decrease)
- True-up ensures that revenues collected are equal to formula-determined amount
Our Practices

ENERGY & UTILITIES
- Competition & Market Manipulation
- Distributed Energy Resources
- Electric Transmission
- Electricity Market Modeling & Resource Planning
- Energy Litigation
- Environmental Policy, Planning and Compliance
- Finance and Ratemaking
- Gas/Electric Coordination
- Market Design
- Natural Gas & Petroleum
- Nuclear
- Renewable & Alternative Energy

LITIGATION
- Accounting
- Analysis of Market Manipulation
- Antitrust/Competition
- Bankruptcy & Restructuring
- Big Data & Document Analytics
- Commercial Damages
- Environmental Litigation & Regulation
- Intellectual Property
- International Arbitration
- International Trade
- Labor & Employment
- Mergers & Acquisitions Litigation
- Product Liability
- Securities & Finance
- Tax Controversy & Transfer Pricing
- Valuation
- White Collar Investigations & Litigation

INDUSTRIES
- Electric Power
- Financial Institutions
- Natural Gas & Petroleum
- Pharmaceuticals & Medical Devices
- Telecommunications, Internet, and Media
- Transportation
- Water