New Network Tariff Designs
For Retail Electricity Markets

PRESENTED TO
The Center for Research into Regulated Industries (CRRI)
Western Conference

PRESENTED BY
Neil Lessem, Ph.D.
Toby Brown, D.Phil.

28 June 2018
In Europe, Australia and New Zealand, retail electric competition is the norm for mass market customers

Most US states do not have full electric retail competition

- Only 13 states (and D.C.)

In states with full retail choice most load is served by Retail Energy Providers (REPs)

- 50% to 75% of total eligible load

But most customers are not served by REPs

- Only 10 to 50% of residential load is served by REPs
- Whereas 65 to 90% Commercial and Industrial (C&I) load is served by REPs

In Texas there is no default provider, so REPs serve 100% of both residential and C&I load

Notes:
[1]: Partial competition states are not included.
[2]: Diameter of circles reflects number of “addressable” customers in 2016.
Retail choice is facing increased scrutiny from regulators in the US

A few state attorneys general have taken the position that retail choice is harming residential customers and recommended ending REP service to these customers.

Massachusetts

In March 2018 the AG published a report it sponsored which criticizes retail choice and recommends eliminating REP service to all residential customers.

New York

The retail choice market has been under review since 2012. REPS were restricted from serving low income customers in December 2016. Ongoing case by NY AG looking to restrict REP service to all residential customers.

Sources: See appendix.
And abroad…

United Kingdom
- Competition Market Authority investigation into retail market competitiveness in 2014
- Some retail prices were re-regulated in 2017
- Legislation to impose temporary regulation on all retail prices in 2018

Australia
- Recent reforms to address “confusing” retailer discounts (AEMC)
- Currently ongoing retail competition review lead by the Australian Competition and Consumer Commission (ACCC)
- Review of Victorian Market in 2017

New Zealand
- Currently ongoing review into retail competition lead by the New Zealand Commerce Commission
In retail electricity markets, regulators do not set the bundled price customers pay, or determine its structure.

Networks and regulators set network tariffs.

Retailers do not see network costs only network tariffs.

Retail price plans are set by retailers.

Retail customers do not see network tariffs only retail price plans.

Regulators only set network tariffs, but not retail prices:
- Only retailers see network tariffs.
- The structure of the retail prices that customers pay will influence their behaviours and therefore the network costs.
Information flows between market players will ultimately impact system costs.
Default distribution tariffs tend to be variable charges coupled with a small fixed charge

<table>
<thead>
<tr>
<th>Default Residential Rate Structure</th>
<th>Country</th>
<th>State/Region</th>
<th>Retail Competition</th>
<th>Locational Variation Rate</th>
<th>Fixed Charge</th>
<th>Variable Component</th>
<th>Demand Component</th>
<th>Notes:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AusNet Services</td>
<td>Australia</td>
<td>Victoria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Jemena</td>
<td>Australia</td>
<td>Victoria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Citipower</td>
<td>Australia</td>
<td>Victoria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Powercor</td>
<td>Australia</td>
<td>Victoria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>United Energy</td>
<td>Australia</td>
<td>Victoria</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ATCO</td>
<td>Canada</td>
<td>Alberta</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Fortis Alberta</td>
<td>Canada</td>
<td>Alberta</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hydro One</td>
<td>Canada</td>
<td>Ontario</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Enedis</td>
<td>France</td>
<td>Mainland</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Northern Powergrid</td>
<td>UK</td>
<td>North East</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Western Power</td>
<td>UK</td>
<td>South West</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ConEd</td>
<td>US</td>
<td>NY</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>PG&E</td>
<td>US</td>
<td>CA</td>
<td>CCA</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>National Grid, NY</td>
<td>US</td>
<td>NY</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Arizona Public Service</td>
<td>US</td>
<td>AZ</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Salt River Project</td>
<td>US</td>
<td>AZ</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>NSTAR</td>
<td>US</td>
<td>MA</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ComEd</td>
<td>US</td>
<td>IL</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Consumers Energy</td>
<td>US</td>
<td>MI</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Oncor</td>
<td>US</td>
<td>TX</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Energex</td>
<td>Australia</td>
<td>Queensland</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Evoenergy</td>
<td>Australia</td>
<td>ACT</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Vector</td>
<td>New Zealand</td>
<td>Auckland</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 distribution utilities</td>
<td>21</td>
<td>5</td>
<td>20</td>
<td>23</td>
<td>4</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
Tariff reform is occurring around the world

Variable charges do not reflect system costs

Smart meters enable new ways of charging customers

- Tariffs traditionally used for larger commercial/industrial customers now feasible for households

Usage behaviour is becoming more diverse

- Distributed energy resources
- Energy efficiency
- Changing tastes and behaviours

Trend puts greater weight on demand charges and fixed charges

However, most experience comes from vertically-integrated utilities and/or networks that charge end-customers directly
Tariff objectives are similar across jurisdictions with and without retail competition

- **Simplicity**: Customers want a simple-to-understand bill
- **Economic Efficiency**: Network users face price signals that reflect the impact of their decisions on network costs
- **Adaptability**: As new customer-side technologies become available and network flows change, customers should continue to pay the costs of the changing mix of services they receive
- **Affordability**: Access to network services should be affordable, including for vulnerable customers
- **Equity**: Customers should pay a fair contribution to the costs of the existing shared network

But the challenge is different when regulators set network tariffs, but not retail prices.
How can the marriage of network tariff reform and retail competition be a happy one?

We propose designing tariffs that are focused on retailers, not customers

- Movement towards cost-reflective tariffs is potentially unpopular
 - Both winners and losers

Tariffs focused on retailers can be fully cost-reflective

- Complexity is not an issue

Retailers are experts in designing prices that customers like

- There are many simple tariffs that are more cost-reflective
 - E.g. free nights and weekends
Tariffs aimed at retailers are better able to achieve simplicity for customers, while better reflecting costs.

* Retailer input costs are the cost shares for Victoria for 2017/18 derived from the AEMC 2017 Residential Electricity Price Trends (December 2017): 38% networks, 44% wholesale electricity, 13% retail and other costs (including retail margin) and 5% environmental.
Network tariff reform can promote retail competition and increase affordability

Network charge is a cost like other retailer costs

Retailers design a range of price plans to appeal to different customers
- Retailers use bills and other communication routes to inform customers
- Retail price plans can adapt quickly

Retailers can compete over a larger “value stack”
- Increased “headroom” between current retail price and cost-to-serve
- Opportunity for retailers to undercut rivals / gain market share
- Success for retailers that can
 - Identify low-cost customers
 - Present customers with information and choices to adapt consumption

Relies on effective competition to deliver objectives
- Network tariff can encourage competition

Smart meters are necessary
"Happy families are all alike; every unhappy family is unhappy in its own way."

For a marriage to be happy it needs to succeed in multiple dimensions, each unique to the couple

Network tariff design in competitive retail markets should play to the relative strengths of retailers and networks

- Networks are experts in planning and managing their network infrastructure and data
- Retailers are experts in managing the customer relationship and have better knowledge of other input costs

Cost reflective network prices + retail competition can reduce overall network costs

- Networks can enhance retail competition
Appendix
Tariff reform takes many forms

• **Customer charges/fixed charges**
 – Common component of most bills, but typically modest in size
 – In Ontario, Canada, the entire distribution charge is fixed

• **Time-of-use (TOU)**
 – The most common form of time-varying charge, with high peak price and lower off-peak price applied on a predictable, daily basis.
 • California is transitioning to default TOU for its regulated (vertically integrated) utilities
 • All customers in Italy and Ontario are on default TOU (for the energy component only in Ontario)

• **Critical peak pricing (CPP)**
 – High prices when the grid is constrained (critical peak events), low prices in all other hours.
 • France has had opt-in CPP since 1996—about 400,000 customers

• **Demand subscription service (DSS)**
 – Customers select a demand level from a menu. If customers deviate from their subscribed demand level, they will pay a pre-determined price for every extra unit of consumption.
 • Currently being contemplated in QLD
 • Similar to capacity charges, which are common in Europe

• **Demand charges**
 – Either peak demand or maximum demand over a specified time period
 – Opt-in demand in Victoria (retailers choose)
 – Default for new customers in the ACT
Networks and retailers can both contribute to achieving objectives

<table>
<thead>
<tr>
<th>Objective</th>
<th>Network Role</th>
<th>Retailer Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicity</td>
<td>Ensure tariffs are clear to retailers and assist retailers in transition</td>
<td>Design a menu of plans that appeal to customers</td>
</tr>
<tr>
<td>Economic efficiency</td>
<td>Tariff reflects incremental network costs</td>
<td>Competition drives efficiency</td>
</tr>
<tr>
<td>Adaptable</td>
<td>Monitor new network uses and ensure tariff continues to reflect incremental costs</td>
<td>Innovate and respond to new technology</td>
</tr>
<tr>
<td>Affordable</td>
<td>Network costs controlled in response to revenue cap</td>
<td>Create “no frills” price options</td>
</tr>
<tr>
<td>Equitable</td>
<td>Tariff treats all like users alike</td>
<td>General and energy-specific consumer safeguards</td>
</tr>
</tbody>
</table>
Tariffs aimed at retailers are better able to achieve simplicity for customers

<table>
<thead>
<tr>
<th>Tariff Objective</th>
<th>Network Tariffs for End-Customers</th>
<th>Network Tariffs for Retailers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TOU</td>
<td>CPP and Customer-count Charge</td>
</tr>
<tr>
<td></td>
<td>Demand Subscription Service</td>
<td>Fixed</td>
</tr>
<tr>
<td>Simple</td>
<td>Strong</td>
<td>Strong</td>
</tr>
<tr>
<td>Economic Efficiency</td>
<td>Medium</td>
<td>Strong</td>
</tr>
<tr>
<td>Adaptable</td>
<td>Medium</td>
<td>Strong</td>
</tr>
<tr>
<td>Affordable</td>
<td>Strong</td>
<td>Medium</td>
</tr>
<tr>
<td>Equitable</td>
<td>Weak</td>
<td>Strong</td>
</tr>
</tbody>
</table>

- **Strong** indicates a strong fit for the objective.
- **Medium** indicates a medium fit for the objective.
- **Weak** indicates a weak fit for the objective.
Presenter Information

NEIL LESSEM, PH.D.
Senior Associate | Sydney
Neil.Lessem@brattle.com
+61.2.8123.0999

Neil Lessem is an expert on consumer behaviour and energy markets. He has assisted clients around the world on issues such as wholesale market design, regulated tariffs and cost allocation, innovative customer and pricing programs, and policy impact measurement.

He has worked with more than 50 clients across North America, Asia-Pacific and the Middle-East. His clients include regulators, policy makers, utilities, system operators, consumer representatives, tech startups and infrastructure owners. He has published in peer-reviewed journals such as the Journal of Economics and Environmental Management and Business and Society; and trade journals such as The Electricity Journal and the Public Utilities Fortnightly. He has presented on pressing energy topics to audiences in Brazil, Hong Kong, the United States, Canada, Malaysia and Hong Kong. In his graduate studies, Neil Lessem conducted extensive research examining consumer adoption of environmentally-friendly products and conservation behaviors, utilizing both field experiments and utility data.

He holds a Ph.D. and M.A. in Economics from the University of California, Los Angeles and an honours degree in Business, Economics and History from the University of Cape Town.

The views expressed in this presentation are strictly those of the presenter(s) and do not necessarily state or reflect the views of The Brattle Group.
Dr. Toby Brown specialises in the regulation and economics of the gas and electricity sectors. He has more than 15 years’ experience consulting for utilities, producers, pipelines and regulators in Australia, New Zealand, Europe, the United States and Canada.

His project experience at Brattle includes analysing business risk in pipeline rate cases, assessing the economic impacts of alternative regulatory frameworks and competitive structures in the energy sector, and advising on regulatory best practices based on experience in different jurisdictions worldwide.

Dr. Brown heads Brattle’s Sydney office. Prior to joining Brattle he worked at the UK energy regulator, Ofgem. He holds a D.Phil. in chemistry from the University of Oxford.
Our Practices

PRACTICES
- Accounting
- Antitrust/Competition
- Bankruptcy and Restructuring Analysis
- Big Data Analytics
- Commercial Damages
- Environmental Litigation and Regulation
- Intellectual Property
- International Arbitration
- International Trade
- Mergers & Acquisitions Litigation
- Product Liability
- Regulatory Finance and Accounting
- Risk Management
- Securities
- Tax
- Utility Regulatory Policy and Ratemaking
- Valuation

INDUSTRIES
- Electric Power
- Financial Institutions
- Natural Gas and Petroleum
- Pharmaceuticals and Medical Devices
- Telecommunications and Media
- Transportation